Cargando…

Short-Term Dairy Product Elimination and Reintroduction Minimally Perturbs the Gut Microbiota in Self-Reported Lactose-Intolerant Adults

An outstanding question regarding the human gut microbiota is whether and how microbiota-directed interventions influence host phenotypic traits. Here, we employed a dietary intervention to probe this question in the context of lactose intolerance. To assess the effects of dietary dairy product elim...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Courtney J., Dethlefsen, Les, Gardner, Christopher, Nguyen, Linda, Feldman, Marcus, Costello, Elizabeth K., Kolodny, Oren, Relman, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239098/
https://www.ncbi.nlm.nih.gov/pubmed/35695459
http://dx.doi.org/10.1128/mbio.01051-22
Descripción
Sumario:An outstanding question regarding the human gut microbiota is whether and how microbiota-directed interventions influence host phenotypic traits. Here, we employed a dietary intervention to probe this question in the context of lactose intolerance. To assess the effects of dietary dairy product elimination and (re)introduction on the microbiota and host phenotype, we studied 12 self-reported mildly lactose-intolerant adults with triweekly collection of fecal samples over a 12-week study period: 2 weeks of baseline diet, 4 weeks of dairy product elimination, and 6 weeks of gradual whole cow milk (re)introduction. Of the 12 subjects, 6 reported either no dairy or only lactose-free dairy product consumption. A clinical assay for lactose intolerance, the hydrogen breath test, was performed before and after each of these three study phases, and 16S rRNA gene amplicon sequencing was performed on all fecal samples. We found that none of the subjects showed change in a clinically defined measure of lactose tolerance. Similarly, fecal microbiota structure resisted modification. Although the mean fraction of the genus Bifidobacterium, a group known to metabolize lactose, increased slightly with milk (re)introduction (from 0.0125 to 0.0206; Wilcoxon P = 0.068), the overall structure of each subject’s gut microbiota remained highly individualized and largely stable in the face of diet manipulation.