Cargando…

Virus-Host Interactions and Genetic Diversity of Antarctic Sea Ice Bacteriophages

Although we know the generally appreciated significant roles of microbes in sea ice and polar waters, detailed studies of virus-host systems from such environments have been so far limited by only a few available isolates. Here, we investigated infectivity under various conditions, infection cycles,...

Descripción completa

Detalles Bibliográficos
Autores principales: Demina, Tatiana A., Luhtanen, Anne-Mari, Roux, Simon, Oksanen, Hanna M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239159/
https://www.ncbi.nlm.nih.gov/pubmed/35532161
http://dx.doi.org/10.1128/mbio.00651-22
Descripción
Sumario:Although we know the generally appreciated significant roles of microbes in sea ice and polar waters, detailed studies of virus-host systems from such environments have been so far limited by only a few available isolates. Here, we investigated infectivity under various conditions, infection cycles, and genetic diversity of the following Antarctic sea ice bacteriophages: Paraglaciecola Antarctic GD virus 1 (PANV1), Paraglaciecola Antarctic JLT virus 2 (PANV2), Octadecabacter Antarctic BD virus 1 (OANV1), and Octadecabacter Antarctic DB virus 2 (OANV2). The phages infect common sea ice bacteria belonging to the genera Paraglaciecola or Octadecabacter. Although the phages are marine and cold-active, replicating at 0°C to 5°C, they all survived temporal incubations at ≥30°C and remained infectious without any salts or supplemented only with magnesium, suggesting a robust virion assembly maintaining integrity under a wide range of conditions. Host recognition in the cold proved to be effective, and the release of progeny viruses occurred as a result of cell lysis. The analysis of viral genome sequences showed that nearly one-half of the gene products of each virus are unique, highlighting that sea ice harbors unexplored virus diversity. Based on predicted genes typical for tailed double-stranded DNA phages, we suggest placing the four studied viruses in the class Caudoviricetes. Searching against viral sequences from metagenomic assemblies, we revealed that related viruses are not restricted to Antarctica but are also found in distant marine environments.