Cargando…

Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner

Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional transcription factor that is essential for lytic HCMV infection. IE2 functions as an activator of viral early genes, negatively regulates its own promoter, and is required for viral replication. The mechanisms by which...

Descripción completa

Detalles Bibliográficos
Autores principales: Ball, Christopher B., Li, Ming, Parida, Mrutyunjaya, Hu, Qiaolin, Ince, Deniz, Collins, Geoffrey S., Meier, Jeffery L., Price, David H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239164/
https://www.ncbi.nlm.nih.gov/pubmed/35579393
http://dx.doi.org/10.1128/mbio.00337-22
_version_ 1784737229942292480
author Ball, Christopher B.
Li, Ming
Parida, Mrutyunjaya
Hu, Qiaolin
Ince, Deniz
Collins, Geoffrey S.
Meier, Jeffery L.
Price, David H.
author_facet Ball, Christopher B.
Li, Ming
Parida, Mrutyunjaya
Hu, Qiaolin
Ince, Deniz
Collins, Geoffrey S.
Meier, Jeffery L.
Price, David H.
author_sort Ball, Christopher B.
collection PubMed
description Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional transcription factor that is essential for lytic HCMV infection. IE2 functions as an activator of viral early genes, negatively regulates its own promoter, and is required for viral replication. The mechanisms by which IE2 executes these distinct functions are incompletely understood. Using PRO-Seq, which profiles nascent transcripts, and a recently developed DFF-chromatin immunoprecipitation (DFF-ChIP; employs chromatin digestion by the endonuclease DNA fragmentation factor prior to IP) approach that resolves occupancy and local chromatin environment, we show that IE2 controls viral gene transcription in three distinct capacities during late HCMV infection and reveal mechanisms that involve direct binding of IE2 to viral DNA. IE2 represses a subset of viral promoters by binding within their core promoter regions and blocking the assembly of preinitiation complexes (PICs). Remarkably, IE2 forms a repressive complex at the major immediate-early promoter region involving direct association of IE2 with nucleosomes and TBP. IE2 stimulates transcription by binding nearby, but not within, core promoter regions. In addition, IE2 functions as a direct roadblock to transcription elongation. At one locus, this function of IE2 appears to be important for the synthesis of a spliced viral RNA. Consistent with the minimal observed effects of IE2 depletion on host gene transcription, IE2 does not functionally engage the host genome. Our results reveal mechanisms of transcriptional control by IE2, uncover a previously unknown function of IE2 as a Pol II elongation modulator, and demonstrate that DFF-ChIP is a useful tool for probing transcription factor occupancy and interactions between transcription factors and nucleosomes at high resolution.
format Online
Article
Text
id pubmed-9239164
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-92391642022-06-29 Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner Ball, Christopher B. Li, Ming Parida, Mrutyunjaya Hu, Qiaolin Ince, Deniz Collins, Geoffrey S. Meier, Jeffery L. Price, David H. mBio Research Article Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional transcription factor that is essential for lytic HCMV infection. IE2 functions as an activator of viral early genes, negatively regulates its own promoter, and is required for viral replication. The mechanisms by which IE2 executes these distinct functions are incompletely understood. Using PRO-Seq, which profiles nascent transcripts, and a recently developed DFF-chromatin immunoprecipitation (DFF-ChIP; employs chromatin digestion by the endonuclease DNA fragmentation factor prior to IP) approach that resolves occupancy and local chromatin environment, we show that IE2 controls viral gene transcription in three distinct capacities during late HCMV infection and reveal mechanisms that involve direct binding of IE2 to viral DNA. IE2 represses a subset of viral promoters by binding within their core promoter regions and blocking the assembly of preinitiation complexes (PICs). Remarkably, IE2 forms a repressive complex at the major immediate-early promoter region involving direct association of IE2 with nucleosomes and TBP. IE2 stimulates transcription by binding nearby, but not within, core promoter regions. In addition, IE2 functions as a direct roadblock to transcription elongation. At one locus, this function of IE2 appears to be important for the synthesis of a spliced viral RNA. Consistent with the minimal observed effects of IE2 depletion on host gene transcription, IE2 does not functionally engage the host genome. Our results reveal mechanisms of transcriptional control by IE2, uncover a previously unknown function of IE2 as a Pol II elongation modulator, and demonstrate that DFF-ChIP is a useful tool for probing transcription factor occupancy and interactions between transcription factors and nucleosomes at high resolution. American Society for Microbiology 2022-05-17 /pmc/articles/PMC9239164/ /pubmed/35579393 http://dx.doi.org/10.1128/mbio.00337-22 Text en Copyright © 2022 Ball et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Ball, Christopher B.
Li, Ming
Parida, Mrutyunjaya
Hu, Qiaolin
Ince, Deniz
Collins, Geoffrey S.
Meier, Jeffery L.
Price, David H.
Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner
title Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner
title_full Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner
title_fullStr Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner
title_full_unstemmed Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner
title_short Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner
title_sort human cytomegalovirus ie2 both activates and represses initiation and modulates elongation in a context-dependent manner
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239164/
https://www.ncbi.nlm.nih.gov/pubmed/35579393
http://dx.doi.org/10.1128/mbio.00337-22
work_keys_str_mv AT ballchristopherb humancytomegalovirusie2bothactivatesandrepressesinitiationandmodulateselongationinacontextdependentmanner
AT liming humancytomegalovirusie2bothactivatesandrepressesinitiationandmodulateselongationinacontextdependentmanner
AT paridamrutyunjaya humancytomegalovirusie2bothactivatesandrepressesinitiationandmodulateselongationinacontextdependentmanner
AT huqiaolin humancytomegalovirusie2bothactivatesandrepressesinitiationandmodulateselongationinacontextdependentmanner
AT incedeniz humancytomegalovirusie2bothactivatesandrepressesinitiationandmodulateselongationinacontextdependentmanner
AT collinsgeoffreys humancytomegalovirusie2bothactivatesandrepressesinitiationandmodulateselongationinacontextdependentmanner
AT meierjefferyl humancytomegalovirusie2bothactivatesandrepressesinitiationandmodulateselongationinacontextdependentmanner
AT pricedavidh humancytomegalovirusie2bothactivatesandrepressesinitiationandmodulateselongationinacontextdependentmanner