Cargando…

Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine

Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CD...

Descripción completa

Detalles Bibliográficos
Autores principales: Reslane, Itidal, Halsey, Cortney R., Stastny, Amanda, Cabrera, Barbara J., Ahn, Jongsam, Shinde, Dhananjay, Galac, Madeline R., Sladek, Margaret F., Razvi, Fareha, Lehman, McKenzie K., Bayles, Kenneth W., Thomas, Vinai C., Handke, Luke D., Fey, Paul D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239276/
https://www.ncbi.nlm.nih.gov/pubmed/35475645
http://dx.doi.org/10.1128/mbio.00395-22
_version_ 1784737264931176448
author Reslane, Itidal
Halsey, Cortney R.
Stastny, Amanda
Cabrera, Barbara J.
Ahn, Jongsam
Shinde, Dhananjay
Galac, Madeline R.
Sladek, Margaret F.
Razvi, Fareha
Lehman, McKenzie K.
Bayles, Kenneth W.
Thomas, Vinai C.
Handke, Luke D.
Fey, Paul D.
author_facet Reslane, Itidal
Halsey, Cortney R.
Stastny, Amanda
Cabrera, Barbara J.
Ahn, Jongsam
Shinde, Dhananjay
Galac, Madeline R.
Sladek, Margaret F.
Razvi, Fareha
Lehman, McKenzie K.
Bayles, Kenneth W.
Thomas, Vinai C.
Handke, Luke D.
Fey, Paul D.
author_sort Reslane, Itidal
collection PubMed
description Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1. Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or SNPs identified upstream of arcA1B1D1C1 increased the transcription of both arcB1 and argGH, encoding ornithine carbamoyltransferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthesis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth within CDM-R. Complementation with arcB1 or arcA1B1D1C1, but not argGH, rescued growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth, as did mutations in genes (proC and rocA) that presumably increased the pyrroline-5-carboxylate and ornithine pools. Collectively, these data suggest that the transcriptional regulation of ornithine carbamoyltransferase and, in addition, the availability of intracellular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glucose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These data suggest that S. aureus is selected to repress arginine biosynthesis in environments with or without glucose; however, mutants may be readily selected that facilitate arginine biosynthesis and growth in specific environments lacking arginine.
format Online
Article
Text
id pubmed-9239276
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-92392762022-06-29 Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine Reslane, Itidal Halsey, Cortney R. Stastny, Amanda Cabrera, Barbara J. Ahn, Jongsam Shinde, Dhananjay Galac, Madeline R. Sladek, Margaret F. Razvi, Fareha Lehman, McKenzie K. Bayles, Kenneth W. Thomas, Vinai C. Handke, Luke D. Fey, Paul D. mBio Research Article Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1. Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or SNPs identified upstream of arcA1B1D1C1 increased the transcription of both arcB1 and argGH, encoding ornithine carbamoyltransferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthesis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth within CDM-R. Complementation with arcB1 or arcA1B1D1C1, but not argGH, rescued growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth, as did mutations in genes (proC and rocA) that presumably increased the pyrroline-5-carboxylate and ornithine pools. Collectively, these data suggest that the transcriptional regulation of ornithine carbamoyltransferase and, in addition, the availability of intracellular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glucose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These data suggest that S. aureus is selected to repress arginine biosynthesis in environments with or without glucose; however, mutants may be readily selected that facilitate arginine biosynthesis and growth in specific environments lacking arginine. American Society for Microbiology 2022-04-27 /pmc/articles/PMC9239276/ /pubmed/35475645 http://dx.doi.org/10.1128/mbio.00395-22 Text en Copyright © 2022 Reslane et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Reslane, Itidal
Halsey, Cortney R.
Stastny, Amanda
Cabrera, Barbara J.
Ahn, Jongsam
Shinde, Dhananjay
Galac, Madeline R.
Sladek, Margaret F.
Razvi, Fareha
Lehman, McKenzie K.
Bayles, Kenneth W.
Thomas, Vinai C.
Handke, Luke D.
Fey, Paul D.
Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine
title Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine
title_full Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine
title_fullStr Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine
title_full_unstemmed Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine
title_short Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine
title_sort catabolic ornithine carbamoyltransferase activity facilitates growth of staphylococcus aureus in defined medium lacking glucose and arginine
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239276/
https://www.ncbi.nlm.nih.gov/pubmed/35475645
http://dx.doi.org/10.1128/mbio.00395-22
work_keys_str_mv AT reslaneitidal catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT halseycortneyr catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT stastnyamanda catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT cabrerabarbaraj catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT ahnjongsam catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT shindedhananjay catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT galacmadeliner catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT sladekmargaretf catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT razvifareha catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT lehmanmckenziek catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT bayleskennethw catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT thomasvinaic catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT handkeluked catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine
AT feypauld catabolicornithinecarbamoyltransferaseactivityfacilitatesgrowthofstaphylococcusaureusindefinedmediumlackingglucoseandarginine