Cargando…
Explainable detection of adverse drug reaction with imbalanced data distribution
Analysis of health-related texts can be used to detect adverse drug reactions (ADR). The greatest challenge for ADR detection lies in imbalanced data distributions where words related to ADR symptoms are often minority classes. As a result, trained models tend to converge to a point that strongly bi...
Autores principales: | Wang, Jin, Yu, Liang-Chih, Zhang, Xuejie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239481/ https://www.ncbi.nlm.nih.gov/pubmed/35704662 http://dx.doi.org/10.1371/journal.pcbi.1010144 |
Ejemplares similares
-
An Explainable Machine Learning Pipeline for Stroke Prediction on Imbalanced Data
por: Kokkotis, Christos, et al.
Publicado: (2022) -
Specialty detection in the context of telemedicine in a highly imbalanced multi-class distribution
por: Alomari, Alaa, et al.
Publicado: (2023) -
The Detection of Adverse Drug Reactions
por: Crooks, James
Publicado: (1977) -
Detecting representative data and generating synthetic samples to improve learning accuracy with imbalanced data sets
por: Li, Der-Chiang, et al.
Publicado: (2017) -
Explanation and prediction of clinical data with imbalanced class distribution based on pattern discovery and disentanglement
por: Zhou, Pei-Yuan, et al.
Publicado: (2021)