Cargando…

Distributed source localization of epileptiform discharges in juvenile myoclonic epilepsy: Standardized low-resolution brain electromagnetic tomography (sLORETA) Study

Juvenile myoclonic epilepsy (JME) is a common generalized epilepsy syndrome considered the prototype of idiopathic generalized epilepsy. To date, generalized and focal seizures have been the fundamental concepts for classifying seizure types. In several studies, focal features of JME have been repor...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kwang Yeon, Moon, Ja-Un, Lee, Joo-Young, Eom, Tae-Hoon, Kim, Young-Hoon, Lee, In-Goo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239631/
https://www.ncbi.nlm.nih.gov/pubmed/35777062
http://dx.doi.org/10.1097/MD.0000000000029625
Descripción
Sumario:Juvenile myoclonic epilepsy (JME) is a common generalized epilepsy syndrome considered the prototype of idiopathic generalized epilepsy. To date, generalized and focal seizures have been the fundamental concepts for classifying seizure types. In several studies, focal features of JME have been reported predominantly in the frontal lobe. However, results in previous studies are inconsistent. Therefore, we investigated the origin of epileptiform discharges in JME. We performed electroencephalography source localization using a distributed model with standardized low-resolution brain electromagnetic tomography. In 20 patients with JME, standardized low-resolution brain electromagnetic tomography images corresponding to the midpoint of the ascending phase and the negative peak of epileptiform discharges were obtained from a total of 362 electroencephalography epochs (181 epochs at each timepoint). At the ascending phase, the maximal current source density was located in the frontal lobe (58.6%), followed by the parietal (26.5%) and occipital lobes (8.8%). At the negative peak, the maximal current source density was located in the frontal lobe (69.1%), followed by the parietal (11.6%) and occipital lobes (9.4%). In the ascending phase, 41.4% of discharges were located outside the frontal lobe, and 30.9% were in the negative peak. Frontal predominance of epileptiform discharges was observed; however, source localization extending to various cortical regions also was identified. This widespread pattern was more prominent in the ascending phase (P = .038). The study results showed that JME includes widespread cortical regions over the frontal lobe. The current concept of generalized epilepsy and pathophysiology in JME needs further validation.