Cargando…
ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/β-Catenin Signaling Pathway
PURPOSE: To investigate the expression of the ADP-ribosylation factor (ARF)-like proteins (ARLs) and ARL4C in clear cell renal cell carcinoma (ccRCC) based on bioinformatics analysis and experimentally determine the effect and mechanism of ARL4C on cellular properties involved in ccRCC progression....
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239764/ https://www.ncbi.nlm.nih.gov/pubmed/35774359 http://dx.doi.org/10.1155/2022/2724515 |
_version_ | 1784737374481154048 |
---|---|
author | Zhang, Peizhi Xu, Yingkun Chen, Shaoan Wang, Zicheng Zhao, Leizuo Chen, Chen Kang, Weiting Han, Rongyu Qiu, Jiechuan Wang, Qingliang Gao, Han Wu, Guangzhen Xia, Qinghua |
author_facet | Zhang, Peizhi Xu, Yingkun Chen, Shaoan Wang, Zicheng Zhao, Leizuo Chen, Chen Kang, Weiting Han, Rongyu Qiu, Jiechuan Wang, Qingliang Gao, Han Wu, Guangzhen Xia, Qinghua |
author_sort | Zhang, Peizhi |
collection | PubMed |
description | PURPOSE: To investigate the expression of the ADP-ribosylation factor (ARF)-like proteins (ARLs) and ARL4C in clear cell renal cell carcinoma (ccRCC) based on bioinformatics analysis and experimentally determine the effect and mechanism of ARL4C on cellular properties involved in ccRCC progression. METHODS: After downloading the data of cancer patients from the TCGA database, we used various bioinformatics analysis websites and methods to analyze the expression and function of ARLs and ARL4C. The differential expression of ARL4C in clinical renal cancer tissues versus adjacent normal tissues was further verified using immunohistochemistry and real-time quantitative reverse-transcription (qRT-PCR). qRT-PCR was used to explore the expression of ARL4C mRNA in normal renal cells versus different ccRCC cell lines, and the protein expression of ARL4C was further verified using western blotting. CCK-8, colony formation, and EdU assays were used to determine the effect of ARL4C knockdown on ccRCC cell proliferation. We also used wound healing and Transwell assays to analyze the changes in ccRCC cell migration and invasion following ARL4C knockdown. Finally, we used western blotting to probe the molecular mode of action of ARL4C in ccRCC cells after exposure to Wnt signaling pathway agonists. RESULTS: Biological function analysis showed that methylation of ARL4C and changes in immune cell infiltration and targeted drug sensitivity caused by altered ARL4C expression affected the prognosis of ccRCC. Further bioinformatics analysis suggested that the expression of ARL4C mRNA was increased in ccRCC, and this was associated with a poor prognosis in ccRCC patients. Increased expression of ARL4C was further verified using qRT-PCR and western blotting of human ccRCC tissue samples. Downregulation of ARL4C significantly inhibited the proliferation, migration, and invasion of ccRCC cells, and activation of the Wnt/β-catenin pathway promoted the expression of ARL4C. As an essential downstream effector of the Wnt signaling pathway, ARL4C increased the expression of cyclin D1 and c-myc, thereby increasing the ability of the cells to undergo epithelial-mesenchymal transition (EMT) and ccRCC progression. CONCLUSIONS: As a critical factor in the Wnt/β-catenin pathway, ARL4C regulates EMT and progression in ccRCC. |
format | Online Article Text |
id | pubmed-9239764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-92397642022-06-29 ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/β-Catenin Signaling Pathway Zhang, Peizhi Xu, Yingkun Chen, Shaoan Wang, Zicheng Zhao, Leizuo Chen, Chen Kang, Weiting Han, Rongyu Qiu, Jiechuan Wang, Qingliang Gao, Han Wu, Guangzhen Xia, Qinghua J Oncol Research Article PURPOSE: To investigate the expression of the ADP-ribosylation factor (ARF)-like proteins (ARLs) and ARL4C in clear cell renal cell carcinoma (ccRCC) based on bioinformatics analysis and experimentally determine the effect and mechanism of ARL4C on cellular properties involved in ccRCC progression. METHODS: After downloading the data of cancer patients from the TCGA database, we used various bioinformatics analysis websites and methods to analyze the expression and function of ARLs and ARL4C. The differential expression of ARL4C in clinical renal cancer tissues versus adjacent normal tissues was further verified using immunohistochemistry and real-time quantitative reverse-transcription (qRT-PCR). qRT-PCR was used to explore the expression of ARL4C mRNA in normal renal cells versus different ccRCC cell lines, and the protein expression of ARL4C was further verified using western blotting. CCK-8, colony formation, and EdU assays were used to determine the effect of ARL4C knockdown on ccRCC cell proliferation. We also used wound healing and Transwell assays to analyze the changes in ccRCC cell migration and invasion following ARL4C knockdown. Finally, we used western blotting to probe the molecular mode of action of ARL4C in ccRCC cells after exposure to Wnt signaling pathway agonists. RESULTS: Biological function analysis showed that methylation of ARL4C and changes in immune cell infiltration and targeted drug sensitivity caused by altered ARL4C expression affected the prognosis of ccRCC. Further bioinformatics analysis suggested that the expression of ARL4C mRNA was increased in ccRCC, and this was associated with a poor prognosis in ccRCC patients. Increased expression of ARL4C was further verified using qRT-PCR and western blotting of human ccRCC tissue samples. Downregulation of ARL4C significantly inhibited the proliferation, migration, and invasion of ccRCC cells, and activation of the Wnt/β-catenin pathway promoted the expression of ARL4C. As an essential downstream effector of the Wnt signaling pathway, ARL4C increased the expression of cyclin D1 and c-myc, thereby increasing the ability of the cells to undergo epithelial-mesenchymal transition (EMT) and ccRCC progression. CONCLUSIONS: As a critical factor in the Wnt/β-catenin pathway, ARL4C regulates EMT and progression in ccRCC. Hindawi 2022-06-21 /pmc/articles/PMC9239764/ /pubmed/35774359 http://dx.doi.org/10.1155/2022/2724515 Text en Copyright © 2022 Peizhi Zhang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhang, Peizhi Xu, Yingkun Chen, Shaoan Wang, Zicheng Zhao, Leizuo Chen, Chen Kang, Weiting Han, Rongyu Qiu, Jiechuan Wang, Qingliang Gao, Han Wu, Guangzhen Xia, Qinghua ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/β-Catenin Signaling Pathway |
title | ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/β-Catenin Signaling Pathway |
title_full | ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/β-Catenin Signaling Pathway |
title_fullStr | ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/β-Catenin Signaling Pathway |
title_full_unstemmed | ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/β-Catenin Signaling Pathway |
title_short | ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/β-Catenin Signaling Pathway |
title_sort | arl4c regulates the progression of clear cell renal cell carcinoma by affecting the wnt/β-catenin signaling pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239764/ https://www.ncbi.nlm.nih.gov/pubmed/35774359 http://dx.doi.org/10.1155/2022/2724515 |
work_keys_str_mv | AT zhangpeizhi arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT xuyingkun arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT chenshaoan arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT wangzicheng arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT zhaoleizuo arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT chenchen arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT kangweiting arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT hanrongyu arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT qiujiechuan arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT wangqingliang arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT gaohan arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT wuguangzhen arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway AT xiaqinghua arl4cregulatestheprogressionofclearcellrenalcellcarcinomabyaffectingthewntbcateninsignalingpathway |