Cargando…

Bioactive Components and Potential Mechanism Prediction of Kui Jie Kang against Ulcerative Colitis via Systematic Pharmacology and UPLC-QE-MS Analysis

Kui Jie Kang (KJK)—a traditional Chinese medicine—has demonstrated clinical therapeutic efficacy against ulcerative colitis (UC). However, the active compounds and their underlying mechanisms have not yet been fully characterized. Therefore, the current study sought to identify the volatile compound...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Jinbiao, Wan, Chunping, Li, Xiaosi, Zhang, Zishu, Yang, Yu, Wang, Huaning, Qi, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239780/
https://www.ncbi.nlm.nih.gov/pubmed/35774753
http://dx.doi.org/10.1155/2022/9122315
Descripción
Sumario:Kui Jie Kang (KJK)—a traditional Chinese medicine—has demonstrated clinical therapeutic efficacy against ulcerative colitis (UC). However, the active compounds and their underlying mechanisms have not yet been fully characterized. Therefore, the current study sought to identify the volatile compounds in KJK responsible for eliciting the therapeutic effect against UC, while also analyzing key targets and potential mechanisms. To this end, systematic network pharmacology analysis was employed to obtain UC targets by using GeneCards, DisGeNET, OMIM, among others. A total of 145 candidate ingredients, 412 potential targets of KJK (12 herbs), and 1605 UC targets were identified. Of these KJK and UC targets, 205 intersected and further identified AKT1, JUN, MAPK, ESR, and TNF as the core targets and the PI3K/AKT signaling pathway as the top enriched pathway. Moreover, molecular docking and ultra-performance liquid chromatography Q Exactive-mass spectrometry analysis identified quercetin, kaempferol, luteolin, wogonin, and nobiletin as the core effective compounds of KJK. In vivo murine studies revealed that KJK exposure increases the body weight and colon length, while reducing colonic epithelial injury, and the expression of inflammatory factors in colitis tissues such as TNF-α, IL-6, and IL-1β. Furthermore, KJK treatment downregulates the expression of pi3k and akt genes, as well as p-PI3K/PI3K and p-AKT/AKT proteins. Collectively, these findings describe the therapeutic effects and mechanisms of KJK in UC and highlight KJK as a potentially valuable therapeutic option for UC via modulation of the PI3K/AKT signaling pathway, thus providing a theoretical reference for the broader application of KJK in the clinical management of UC.