Cargando…
K-Means Clustering Algorithm–Based Functional Magnetic Resonance for Evaluation of Regular Hemodialysis on Brain Function of Patients with End-Stage Renal Disease
This research was to evaluate the effects of regular hemodialysis (HD) on the brain function of patients with end-stage renal disease (ESRD). Resting-state functional magnetic resonance imaging (rs-fMRI) based on improved k-means clustering algorithm (k-means) was proposed to scan the brains of 30 r...
Autores principales: | Cheng, Yan, Yu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239818/ https://www.ncbi.nlm.nih.gov/pubmed/35774296 http://dx.doi.org/10.1155/2022/1181030 |
Ejemplares similares
-
An Entropy Regularization k-Means Algorithm with a New Measure of between-Cluster Distance in Subspace Clustering
por: Xiong, Liyan, et al.
Publicado: (2019) -
Classification Algorithms for Brain Magnetic Resonance Imaging Images of Patients with End-Stage Renal Disease and Depression
por: Cheng, Yan, et al.
Publicado: (2022) -
Symptom Clusters in Patients with End-Stage Renal Disease Undergoing Hemodialysis
por: Chaiviboontham, Suchira, et al.
Publicado: (2020) -
Impact of Regular or Extended Hemodialysis and Hemodialfiltration on Plasma Oxalate Concentrations in Patients With End-Stage Renal Disease
por: Ermer, Theresa, et al.
Publicado: (2017) -
Galectin-3 as an early marker of diastolic dysfunction in children with end-stage renal disease on regular hemodialysis
por: Elsadek, Akram, et al.
Publicado: (2022)