Cargando…

The C3d-fused foot-and-mouth disease vaccine platform overcomes maternally-derived antibody interference by inducing a potent adaptive immunity

Vaccination prevents and controls foot-and-mouth disease (FMD). However, the current FMD vaccine remains disadvantageous since it cannot overcome maternally-derived antibody (MDA) interference in weeks-old animals, which suppress active immunity via vaccination. To address this, we developed the imm...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Min Ja, Kim, Hyun Mi, Shin, Sehee, Jo, Hyundong, Park, So Hui, Kim, Su-Mi, Park, Jong-Hyeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240001/
https://www.ncbi.nlm.nih.gov/pubmed/35764653
http://dx.doi.org/10.1038/s41541-022-00496-8
Descripción
Sumario:Vaccination prevents and controls foot-and-mouth disease (FMD). However, the current FMD vaccine remains disadvantageous since it cannot overcome maternally-derived antibody (MDA) interference in weeks-old animals, which suppress active immunity via vaccination. To address this, we developed the immune-enhancing O PA2-C3d and A22-C3d FMD vaccine strains that can stimulate receptors on the surface of B cells by inserting C3d (a B cell epitope) into the VP1 region of O PA2 (FMDV type O) and A22 (FMDV type A). We purified inactivated viral antigens from these vaccine strains and evaluated their immunogenicity and host defense against FMDV infection in mice. We also verified its efficacy in inducing an adaptive immune response and overcome MDA interference in MDA-positive (MDA(+), FMD-seropositive) and -negative (MDA(−), FMD-seronegative) pigs. These results suggest a key strategy for establishing novel FMD vaccine platform to overcome MDA interference and induce a robust adaptive immune response.