Cargando…
Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation
Despite the availability of chromatin conformation capture experiments, discerning the relationship between the 1D genome and 3D conformation remains a challenge, which limits our understanding of their affect on gene expression and disease. We propose Hi-C-LSTM, a method that produces low-dimension...
Autores principales: | Dsouza, Kevin B., Maslova, Alexandra, Al-Jibury, Ediem, Merkenschlager, Matthias, Bhargava, Vijay K., Libbrecht, Maxwell W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240038/ https://www.ncbi.nlm.nih.gov/pubmed/35764630 http://dx.doi.org/10.1038/s41467-022-31337-w |
Ejemplares similares
-
A deep learning method for replicate-based analysis of chromosome conformation contacts using Siamese neural networks
por: Al-jibury, Ediem, et al.
Publicado: (2023) -
Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression
por: Libbrecht, Maxwell W., et al.
Publicado: (2015) -
Recovering ensembles of chromatin conformations from contact probabilities
por: Meluzzi, Dario, et al.
Publicado: (2013) -
Dense neural networks for predicting chromatin conformation
por: Farré, Pau, et al.
Publicado: (2018) -
Integrative chromatin domain annotation through graph embedding of Hi-C data
por: Shokraneh, Neda, et al.
Publicado: (2022)