Cargando…
Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe(3)O(4,) and CNTs/water nanofluids for spectrum selective applications
The prime objective of the present experimental work is to evaluate the impact of ultrasonication time and surfactants on the optical characteristics (transmittance and absorbance) and stability of CuO/water, CNTs/water, and Fe(3)O(4)/water nanofluids to be used in spectrum selective applications. T...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240367/ https://www.ncbi.nlm.nih.gov/pubmed/35763944 http://dx.doi.org/10.1016/j.ultsonch.2022.106079 |
_version_ | 1784737529067470848 |
---|---|
author | Sajid, Muhammad Usman Bicer, Yusuf |
author_facet | Sajid, Muhammad Usman Bicer, Yusuf |
author_sort | Sajid, Muhammad Usman |
collection | PubMed |
description | The prime objective of the present experimental work is to evaluate the impact of ultrasonication time and surfactants on the optical characteristics (transmittance and absorbance) and stability of CuO/water, CNTs/water, and Fe(3)O(4)/water nanofluids to be used in spectrum selective applications. Two-step method with various ultrasonication times (30 min, 60 min, and 90 min) was employed to prepare nanofluids (having volume fractions of 0.004 % and 0.0004 %). Furthermore, various surfactants (anionic, cationic, and polymer) were added to the base fluid. The study results revealed that surfactants have a significant effect on the stability of nanofluids over ultrasonication time. The nanofluids prepared using sodium dodecylbenzene sulfonate (SDBS) have the highest zeta potential values than other surfactants used in the experimentation. The increase in transmittance of nanofluid was more prominent for lower concentration (0.0004 %) after one week of preparation. The concentration of nanoparticles, ultrasonication time, temperature, and surfactants influenced the optical characteristics of nanofluids. The most stabled CNTs nanofluid with 0.004 % concentration and 90 min of ultrasonication obtained an average of 67.6 % and 74.6 % higher absorbance than stabled CuO and Fe(3)O(4) nanofluids, respectively. The irradiance transmitted through nanofluid was strongly dependent on the concentration and type of nanoparticles. |
format | Online Article Text |
id | pubmed-9240367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92403672022-06-30 Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe(3)O(4,) and CNTs/water nanofluids for spectrum selective applications Sajid, Muhammad Usman Bicer, Yusuf Ultrason Sonochem Short Communication The prime objective of the present experimental work is to evaluate the impact of ultrasonication time and surfactants on the optical characteristics (transmittance and absorbance) and stability of CuO/water, CNTs/water, and Fe(3)O(4)/water nanofluids to be used in spectrum selective applications. Two-step method with various ultrasonication times (30 min, 60 min, and 90 min) was employed to prepare nanofluids (having volume fractions of 0.004 % and 0.0004 %). Furthermore, various surfactants (anionic, cationic, and polymer) were added to the base fluid. The study results revealed that surfactants have a significant effect on the stability of nanofluids over ultrasonication time. The nanofluids prepared using sodium dodecylbenzene sulfonate (SDBS) have the highest zeta potential values than other surfactants used in the experimentation. The increase in transmittance of nanofluid was more prominent for lower concentration (0.0004 %) after one week of preparation. The concentration of nanoparticles, ultrasonication time, temperature, and surfactants influenced the optical characteristics of nanofluids. The most stabled CNTs nanofluid with 0.004 % concentration and 90 min of ultrasonication obtained an average of 67.6 % and 74.6 % higher absorbance than stabled CuO and Fe(3)O(4) nanofluids, respectively. The irradiance transmitted through nanofluid was strongly dependent on the concentration and type of nanoparticles. Elsevier 2022-06-22 /pmc/articles/PMC9240367/ /pubmed/35763944 http://dx.doi.org/10.1016/j.ultsonch.2022.106079 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Short Communication Sajid, Muhammad Usman Bicer, Yusuf Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe(3)O(4,) and CNTs/water nanofluids for spectrum selective applications |
title | Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe(3)O(4,) and CNTs/water nanofluids for spectrum selective applications |
title_full | Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe(3)O(4,) and CNTs/water nanofluids for spectrum selective applications |
title_fullStr | Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe(3)O(4,) and CNTs/water nanofluids for spectrum selective applications |
title_full_unstemmed | Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe(3)O(4,) and CNTs/water nanofluids for spectrum selective applications |
title_short | Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe(3)O(4,) and CNTs/water nanofluids for spectrum selective applications |
title_sort | impacts of ultrasonication time and surfactants on stability and optical properties of cuo, fe(3)o(4,) and cnts/water nanofluids for spectrum selective applications |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240367/ https://www.ncbi.nlm.nih.gov/pubmed/35763944 http://dx.doi.org/10.1016/j.ultsonch.2022.106079 |
work_keys_str_mv | AT sajidmuhammadusman impactsofultrasonicationtimeandsurfactantsonstabilityandopticalpropertiesofcuofe3o4andcntswaternanofluidsforspectrumselectiveapplications AT biceryusuf impactsofultrasonicationtimeandsurfactantsonstabilityandopticalpropertiesofcuofe3o4andcntswaternanofluidsforspectrumselectiveapplications |