Cargando…
Research on Field Soybean Weed Identification Based on an Improved UNet Model Combined With a Channel Attention Mechanism
Aiming at the problem that it is difficult to identify two types of weeds, grass weeds and broadleaf weeds, in complex field environments, this paper proposes a semantic segmentation method with an improved UNet structure and an embedded channel attention mechanism SE module. First, to eliminate the...
Autores principales: | Yu, Helong, Men, Zhibo, Bi, Chunguang, Liu, Huanjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240479/ https://www.ncbi.nlm.nih.gov/pubmed/35783959 http://dx.doi.org/10.3389/fpls.2022.890051 |
Ejemplares similares
-
Research on weed identification method in rice fields based on UAV remote sensing
por: Yu, Fenghua, et al.
Publicado: (2022) -
Weed25: A deep learning dataset for weed identification
por: Wang, Pei, et al.
Publicado: (2022) -
DenseNet weed recognition model combining local variance preprocessing and attention mechanism
por: Mu, Ye, et al.
Publicado: (2023) -
DSKCA-UNet: Dynamic selective kernel channel attention for medical image segmentation
por: Shen, Longfeng, et al.
Publicado: (2023) -
SAA-UNet: Spatial Attention and Attention Gate UNet for COVID-19 Pneumonia Segmentation from Computed Tomography
por: Alshomrani, Shroog, et al.
Publicado: (2023)