Cargando…
Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury
BACKGROUND: Sepsis-associated acute kidney injury (SA-AKI) is common in critically ill patients, which is associated with significantly increased mortality. Existing mortality prediction tools showed insufficient predictive power or failed to reflect patients' dynamic clinical evolution. Theref...
Autores principales: | Luo, Xiao-Qin, Yan, Ping, Duan, Shao-Bin, Kang, Yi-Xin, Deng, Ying-Hao, Liu, Qian, Wu, Ting, Wu, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240603/ https://www.ncbi.nlm.nih.gov/pubmed/35783603 http://dx.doi.org/10.3389/fmed.2022.853102 |
Ejemplares similares
-
Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis
por: Luo, Xiao-Qin, et al.
Publicado: (2021) -
A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis
por: Zhao, Qin-Yu, et al.
Publicado: (2021) -
Sepsis-Associated Coagulopathy Predicts Hospital Mortality in Critically Ill Patients With Postoperative Sepsis
por: Ren, Chao, et al.
Publicado: (2022) -
Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury
por: Li, Xunliang, et al.
Publicado: (2023) -
Application of Machine Learning to Predict Acute Kidney Disease in Patients With Sepsis Associated Acute Kidney Injury
por: He, Jiawei, et al.
Publicado: (2021)