Cargando…
On the enrichment of time series with textual data for forecasting agricultural commodity prices
Forecasting models in the financial market generally use quantitative time-series data. However, external factors can influence data in time-series, such as weather events, economic crises, and the foreign exchange market. This information is not explicit in the time-series and can influence the pre...
Autores principales: | Reis Filho, Ivan José, Marcacini, Ricardo Marcondes, Rezende, Solange Oliveira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240644/ https://www.ncbi.nlm.nih.gov/pubmed/35782724 http://dx.doi.org/10.1016/j.mex.2022.101758 |
Ejemplares similares
-
Global Energy Price Volatility and Agricultural Commodity Prices in Malaysia
por: Solaymani, Saeed
Publicado: (2022) -
The Hurst Exponent as an Indicator to Anticipate Agricultural Commodity Prices
por: Pérez-Sienes, Leticia, et al.
Publicado: (2023) -
Forecasting oil commodity spot price in a data-rich environment
por: Boubaker, Sabri, et al.
Publicado: (2022) -
Forecasting commodity prices: empirical evidence using deep learning tools
por: Ben Ameur, Hachmi, et al.
Publicado: (2023) -
Return and volatility transmission between oil price shocks and agricultural commodities
por: Umar, Zaghum, et al.
Publicado: (2021)