Cargando…

The physical, mechanical, thermal and barrier properties of starch nanoparticle (SNP)/polyurethane (PU) nanocomposite films synthesised by an ultrasound-assisted process

This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 ...

Descripción completa

Detalles Bibliográficos
Autores principales: Hakke, Vikas S., Landge, Vividha K., Sonawane, Shirish H., Uday Bhaskar Babu, G., Ashokkumar, Muthupandian, M. M. Flores, Erico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240861/
https://www.ncbi.nlm.nih.gov/pubmed/35751937
http://dx.doi.org/10.1016/j.ultsonch.2022.106069
Descripción
Sumario:This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 mol L(-1) H(2)SO(4) was carried out to the starch dispersion for the preparation of SNPs. The synthesized SNPs were blended uniformly within the PU matrix using ultrasonic irradiation (20 kHz, 220 W pulse mode). The temperature was kept constant during the synthesis (4 °C). The nanocomposite coating films were made with a regulated thickness using the casting method. The effect of SNP content (wt%) in nanocomposite coating films on various properties such as morphology, water vapour permeability (WVP), glass transition temperature (Tg), microbial barrier, and mechanical properties was studied. The addition of SNP to the PU matrix increased the roughness of the surface, and Tg by 7 °C, lowering WVP by 60% compared to the PU film without the addition of SNP. As the SNP concentration was increased, the opacity of the film increased. The reinforcement of the SNP in the PU matrix enhanced the microbial barrier of the film by 99.9%, with the optimal content of SNP being 5%. Improvement in the toughness and barrier properties was observed with an increase in the SNP content of the film.