Cargando…

p–i–n Perovskite Solar Cells on Steel Substrates

[Image: see text] An efficient substrate-configuration p–i–n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol...

Descripción completa

Detalles Bibliográficos
Autores principales: Feleki, Benjamin T., Bouwer, Ricardo K. M., Zardetto, Valerio, Wienk, Martijn M., Janssen, René A. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241001/
https://www.ncbi.nlm.nih.gov/pubmed/35783346
http://dx.doi.org/10.1021/acsaem.2c00291
Descripción
Sumario:[Image: see text] An efficient substrate-configuration p–i–n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol-9-yl)ethyl]phosphonic acid monolayer as a hole-selective contact. A triple-cation perovskite is used as the absorber layer. Thermally evaporated C(60) and atomic layer deposited SnO(2) layers serve to create an electron-selective contact. The cells use an ITO top electrode with an antireflective MgF(2) coating. The optimized cell fabricated on a polymer-coated steel substrate reaches a power conversion efficiency of 16.5%, which approaches the 18.4% efficiency of a p–i–n reference superstrate-configuration cell that uses a similar stack design. Optical simulations suggest that the remaining optical losses are due to the absorption of light by the ITO top electrode, the C(60) layer, the Ti bottom electrode, and reflection from the MgF(2) coating in almost equal amounts. The major loss is, however, in the fill factor as a result of an increased sheet resistance of the top ITO electrode.