Cargando…
p–i–n Perovskite Solar Cells on Steel Substrates
[Image: see text] An efficient substrate-configuration p–i–n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241001/ https://www.ncbi.nlm.nih.gov/pubmed/35783346 http://dx.doi.org/10.1021/acsaem.2c00291 |
_version_ | 1784737694988894208 |
---|---|
author | Feleki, Benjamin T. Bouwer, Ricardo K. M. Zardetto, Valerio Wienk, Martijn M. Janssen, René A. J. |
author_facet | Feleki, Benjamin T. Bouwer, Ricardo K. M. Zardetto, Valerio Wienk, Martijn M. Janssen, René A. J. |
author_sort | Feleki, Benjamin T. |
collection | PubMed |
description | [Image: see text] An efficient substrate-configuration p–i–n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol-9-yl)ethyl]phosphonic acid monolayer as a hole-selective contact. A triple-cation perovskite is used as the absorber layer. Thermally evaporated C(60) and atomic layer deposited SnO(2) layers serve to create an electron-selective contact. The cells use an ITO top electrode with an antireflective MgF(2) coating. The optimized cell fabricated on a polymer-coated steel substrate reaches a power conversion efficiency of 16.5%, which approaches the 18.4% efficiency of a p–i–n reference superstrate-configuration cell that uses a similar stack design. Optical simulations suggest that the remaining optical losses are due to the absorption of light by the ITO top electrode, the C(60) layer, the Ti bottom electrode, and reflection from the MgF(2) coating in almost equal amounts. The major loss is, however, in the fill factor as a result of an increased sheet resistance of the top ITO electrode. |
format | Online Article Text |
id | pubmed-9241001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92410012022-06-30 p–i–n Perovskite Solar Cells on Steel Substrates Feleki, Benjamin T. Bouwer, Ricardo K. M. Zardetto, Valerio Wienk, Martijn M. Janssen, René A. J. ACS Appl Energy Mater [Image: see text] An efficient substrate-configuration p–i–n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol-9-yl)ethyl]phosphonic acid monolayer as a hole-selective contact. A triple-cation perovskite is used as the absorber layer. Thermally evaporated C(60) and atomic layer deposited SnO(2) layers serve to create an electron-selective contact. The cells use an ITO top electrode with an antireflective MgF(2) coating. The optimized cell fabricated on a polymer-coated steel substrate reaches a power conversion efficiency of 16.5%, which approaches the 18.4% efficiency of a p–i–n reference superstrate-configuration cell that uses a similar stack design. Optical simulations suggest that the remaining optical losses are due to the absorption of light by the ITO top electrode, the C(60) layer, the Ti bottom electrode, and reflection from the MgF(2) coating in almost equal amounts. The major loss is, however, in the fill factor as a result of an increased sheet resistance of the top ITO electrode. American Chemical Society 2022-06-14 2022-06-27 /pmc/articles/PMC9241001/ /pubmed/35783346 http://dx.doi.org/10.1021/acsaem.2c00291 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Feleki, Benjamin T. Bouwer, Ricardo K. M. Zardetto, Valerio Wienk, Martijn M. Janssen, René A. J. p–i–n Perovskite Solar Cells on Steel Substrates |
title | p–i–n
Perovskite Solar Cells on Steel
Substrates |
title_full | p–i–n
Perovskite Solar Cells on Steel
Substrates |
title_fullStr | p–i–n
Perovskite Solar Cells on Steel
Substrates |
title_full_unstemmed | p–i–n
Perovskite Solar Cells on Steel
Substrates |
title_short | p–i–n
Perovskite Solar Cells on Steel
Substrates |
title_sort | p–i–n
perovskite solar cells on steel
substrates |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241001/ https://www.ncbi.nlm.nih.gov/pubmed/35783346 http://dx.doi.org/10.1021/acsaem.2c00291 |
work_keys_str_mv | AT felekibenjamint pinperovskitesolarcellsonsteelsubstrates AT bouwerricardokm pinperovskitesolarcellsonsteelsubstrates AT zardettovalerio pinperovskitesolarcellsonsteelsubstrates AT wienkmartijnm pinperovskitesolarcellsonsteelsubstrates AT janssenreneaj pinperovskitesolarcellsonsteelsubstrates |