Cargando…

p–i–n Perovskite Solar Cells on Steel Substrates

[Image: see text] An efficient substrate-configuration p–i–n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol...

Descripción completa

Detalles Bibliográficos
Autores principales: Feleki, Benjamin T., Bouwer, Ricardo K. M., Zardetto, Valerio, Wienk, Martijn M., Janssen, René A. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241001/
https://www.ncbi.nlm.nih.gov/pubmed/35783346
http://dx.doi.org/10.1021/acsaem.2c00291
_version_ 1784737694988894208
author Feleki, Benjamin T.
Bouwer, Ricardo K. M.
Zardetto, Valerio
Wienk, Martijn M.
Janssen, René A. J.
author_facet Feleki, Benjamin T.
Bouwer, Ricardo K. M.
Zardetto, Valerio
Wienk, Martijn M.
Janssen, René A. J.
author_sort Feleki, Benjamin T.
collection PubMed
description [Image: see text] An efficient substrate-configuration p–i–n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol-9-yl)ethyl]phosphonic acid monolayer as a hole-selective contact. A triple-cation perovskite is used as the absorber layer. Thermally evaporated C(60) and atomic layer deposited SnO(2) layers serve to create an electron-selective contact. The cells use an ITO top electrode with an antireflective MgF(2) coating. The optimized cell fabricated on a polymer-coated steel substrate reaches a power conversion efficiency of 16.5%, which approaches the 18.4% efficiency of a p–i–n reference superstrate-configuration cell that uses a similar stack design. Optical simulations suggest that the remaining optical losses are due to the absorption of light by the ITO top electrode, the C(60) layer, the Ti bottom electrode, and reflection from the MgF(2) coating in almost equal amounts. The major loss is, however, in the fill factor as a result of an increased sheet resistance of the top ITO electrode.
format Online
Article
Text
id pubmed-9241001
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-92410012022-06-30 p–i–n Perovskite Solar Cells on Steel Substrates Feleki, Benjamin T. Bouwer, Ricardo K. M. Zardetto, Valerio Wienk, Martijn M. Janssen, René A. J. ACS Appl Energy Mater [Image: see text] An efficient substrate-configuration p–i–n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol-9-yl)ethyl]phosphonic acid monolayer as a hole-selective contact. A triple-cation perovskite is used as the absorber layer. Thermally evaporated C(60) and atomic layer deposited SnO(2) layers serve to create an electron-selective contact. The cells use an ITO top electrode with an antireflective MgF(2) coating. The optimized cell fabricated on a polymer-coated steel substrate reaches a power conversion efficiency of 16.5%, which approaches the 18.4% efficiency of a p–i–n reference superstrate-configuration cell that uses a similar stack design. Optical simulations suggest that the remaining optical losses are due to the absorption of light by the ITO top electrode, the C(60) layer, the Ti bottom electrode, and reflection from the MgF(2) coating in almost equal amounts. The major loss is, however, in the fill factor as a result of an increased sheet resistance of the top ITO electrode. American Chemical Society 2022-06-14 2022-06-27 /pmc/articles/PMC9241001/ /pubmed/35783346 http://dx.doi.org/10.1021/acsaem.2c00291 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Feleki, Benjamin T.
Bouwer, Ricardo K. M.
Zardetto, Valerio
Wienk, Martijn M.
Janssen, René A. J.
p–i–n Perovskite Solar Cells on Steel Substrates
title p–i–n Perovskite Solar Cells on Steel Substrates
title_full p–i–n Perovskite Solar Cells on Steel Substrates
title_fullStr p–i–n Perovskite Solar Cells on Steel Substrates
title_full_unstemmed p–i–n Perovskite Solar Cells on Steel Substrates
title_short p–i–n Perovskite Solar Cells on Steel Substrates
title_sort p–i–n perovskite solar cells on steel substrates
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241001/
https://www.ncbi.nlm.nih.gov/pubmed/35783346
http://dx.doi.org/10.1021/acsaem.2c00291
work_keys_str_mv AT felekibenjamint pinperovskitesolarcellsonsteelsubstrates
AT bouwerricardokm pinperovskitesolarcellsonsteelsubstrates
AT zardettovalerio pinperovskitesolarcellsonsteelsubstrates
AT wienkmartijnm pinperovskitesolarcellsonsteelsubstrates
AT janssenreneaj pinperovskitesolarcellsonsteelsubstrates