Cargando…

Multifunctional Heteropentalenes: From Synthesis to Optoelectronic Applications

[Image: see text] In the broad family of heteropentalenes, the combination of two five-membered heterocyclic rings fused in the [3,2-b] mode has attracted the most significant attention. The relatively straightforward access to these structures, being a consequence of the advances in the last two de...

Descripción completa

Detalles Bibliográficos
Autores principales: Stecko, Sebastian, Gryko, Daniel T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241017/
https://www.ncbi.nlm.nih.gov/pubmed/35783172
http://dx.doi.org/10.1021/jacsau.2c00147
Descripción
Sumario:[Image: see text] In the broad family of heteropentalenes, the combination of two five-membered heterocyclic rings fused in the [3,2-b] mode has attracted the most significant attention. The relatively straightforward access to these structures, being a consequence of the advances in the last two decades, combined with their physicochemical properties which match the requirements associated with many applications has led to an explosion of applied research. In this Perspective, we will discuss the recent progress of heteropentalenes’ usefulness as an active element of organic light-emitting diodes and organic field-effect transistors. Among the myriad of possible combinations for the different heteroatoms, thieno[3,2-b]thiophenes and 1,4-dihydropyrrolo[3,2-b]pyrroles are subject to the most intense studies. Together they comprise a potent optoelectronics tool resulting from the combination of appreciable photophysical properties, chemical reactivity, and straightforward synthesis.