Cargando…
Learning to Identify Physiological and Adventitious Metal-Binding Sites in the Three-Dimensional Structures of Proteins by Following the Hints of a Deep Neural Network
[Image: see text] Thirty-eight percent of protein structures in the Protein Data Bank contain at least one metal ion. However, not all these metal sites are biologically relevant. Cations present as impurities during sample preparation or in the crystallization buffer can cause the formation of prot...
Autores principales: | Laveglia, Vincenzo, Giachetti, Andrea, Sala, Davide, Andreini, Claudia, Rosato, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241070/ https://www.ncbi.nlm.nih.gov/pubmed/35679182 http://dx.doi.org/10.1021/acs.jcim.2c00522 |
Ejemplares similares
-
Hunting down zinc(II)-binding sites in proteins with distance matrices
por: Laveglia, Vincenzo, et al.
Publicado: (2023) -
Automated Determination of Nuclear Magnetic Resonance
Chemical Shift Perturbations in Ligand Screening Experiments: The
PICASSO Web Server
por: Laveglia, Vincenzo, et al.
Publicado: (2021) -
MetalPDB: a database of metal sites in biological macromolecular structures
por: Andreini, Claudia, et al.
Publicado: (2013) -
MetalPDB in 2018: a database of metal sites in biological macromolecular structures
por: Putignano, Valeria, et al.
Publicado: (2018) -
Insights into the Dynamics of the Human Zinc Transporter
ZnT8 by MD Simulations
por: Sala, Davide, et al.
Publicado: (2021)