Cargando…
GTASynth: 3D synthetic data of outdoor non-urban environments.
Developing point clouds registration, SLAM or place recognition algorithms requires data with a high quality ground truth (usually composed of a position and orientation). Moreover, many machine learning algorithms require large amounts of data for training. However, acquiring this kind of data in n...
Autores principales: | Curnis, Giovanni, Fontana, Simone, Sorrenti, Domenico G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241091/ https://www.ncbi.nlm.nih.gov/pubmed/35781982 http://dx.doi.org/10.1016/j.dib.2022.108412 |
Ejemplares similares
-
Outdoor and synthetic performance data for PV devices concerning the weather conditions and capacitor values of I-V tracer
por: Londoño, C.D., et al.
Publicado: (2023) -
Supplementary data of “Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ”
por: Song, Jiyun, et al.
Publicado: (2015) -
Hyperlocal environmental data with a mobile platform in urban environments
por: Wang, An, et al.
Publicado: (2023) -
Data on multiple body parameters, microclimatic variables, and subjective assessment of thermal sensation monitored in outdoor environment
por: Pantavou, Katerina, et al.
Publicado: (2017) -
The effect of music on the perception of outdoor urban environment
por: Franěk, Marek, et al.
Publicado: (2020)