Cargando…
Calcium Bistriflimide-Mediated Sulfur(VI)–Fluoride Exchange (SuFEx): Mechanistic Insights toward Instigating Catalysis
[Image: see text] We report a mechanistic investigation of calcium bistriflimide-mediated sulfur(VI)–fluoride exchange (SuFEx) between sulfonyl fluorides and amines. We determine the likely pre-activation resting state—a calcium bistriflimide complex with ligated amines—thus allowing for corroborate...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241145/ https://www.ncbi.nlm.nih.gov/pubmed/35700314 http://dx.doi.org/10.1021/acs.inorgchem.2c01230 |
Sumario: | [Image: see text] We report a mechanistic investigation of calcium bistriflimide-mediated sulfur(VI)–fluoride exchange (SuFEx) between sulfonyl fluorides and amines. We determine the likely pre-activation resting state—a calcium bistriflimide complex with ligated amines—thus allowing for corroborated calculation of the SuFEx activation barrier at ∼21 kcal/mol, compared to 21.5 ± 0.14 kcal/mol derived via kinetics experiments. Transition state analysis revealed: (1) a two-point calcium-substrate contact that activates the sulfur(VI) center and stabilizes the leaving fluoride and (2) a 1,4-diazabicyclo[2.2.2]octane additive that provides Brønsted-base activation of the nucleophilic amine. Stable Ca–F complexes upon sulfonamide formation are likely contributors to inhibited catalytic turnover, and a proof-of-principle redesign provided evidence that sulfonamide formation is feasible with 10 mol % calcium bistriflimide. |
---|