Cargando…
Brain-Inspired Domain-Incremental Adaptive Detection for Autonomous Driving
Most existing methods for unsupervised domain adaptation (UDA) only involve two domains, i.e., source domain and the target domain. However, such trained adaptive models have poor performance when applied to a new domain without learning. Moreover, using UDA methods to adapt from the source domain t...
Autores principales: | Liang, Weihao, Gan, Lu, Wang, Pengfei, Meng, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241162/ https://www.ncbi.nlm.nih.gov/pubmed/35783366 http://dx.doi.org/10.3389/fnbot.2022.916808 |
Ejemplares similares
-
Semantic segmentation of autonomous driving scenes based on multi-scale adaptive attention mechanism
por: Liu, Danping, et al.
Publicado: (2023) -
Bio-Inspired Autonomous Learning Algorithm With Application to Mobile Robot Obstacle Avoidance
por: Liu, Junxiu, et al.
Publicado: (2022) -
Dual-flow network with attention for autonomous driving
por: Yang, Lei, et al.
Publicado: (2023) -
SAUV—A Bio-Inspired Soft-Robotic Autonomous Underwater Vehicle
por: Plum, Fabian, et al.
Publicado: (2020) -
An improved anchor-free SAR ship detection algorithm based on brain-inspired attention mechanism
por: Shi, Hao, et al.
Publicado: (2022)