Cargando…
Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation
Fungal diseases have become a major public health issue worldwide. Increasing drug resistance and the limited number of available antifungals result in high morbidity and mortality. Metal-based drugs have been reported to be therapeutic agents against major protozoan diseases, but knowledge of their...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241635/ https://www.ncbi.nlm.nih.gov/pubmed/35674440 http://dx.doi.org/10.1128/spectrum.01121-22 |
_version_ | 1784737849153683456 |
---|---|
author | Ye, Jing Wang, Yamei Li, Xinyu Wan, Qinyi Zhang, Yuanwei Lu, Ling |
author_facet | Ye, Jing Wang, Yamei Li, Xinyu Wan, Qinyi Zhang, Yuanwei Lu, Ling |
author_sort | Ye, Jing |
collection | PubMed |
description | Fungal diseases have become a major public health issue worldwide. Increasing drug resistance and the limited number of available antifungals result in high morbidity and mortality. Metal-based drugs have been reported to be therapeutic agents against major protozoan diseases, but knowledge of their ability to function as antifungals is limited. In this study, we found that calcium supplementation combined with iron deficiency causes dramatic growth inhibition of the human fungal pathogens Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Calcium induces the downregulation of iron uptake-related genes and, in particular, causes a decrease in the expression of the transcription factor HapX, which tends to transcriptionally activate siderophore-mediated iron acquisition under iron-deficient conditions. Iron deficiency causes calcium overload and the overproduction of intracellular reactive oxygen species (ROS), and perturbed ion homeostasis suppresses fungal growth. These phenomena are consistently identified in azole-resistant A. fumigatus isolates. The findings here imply that low iron availability lets cells mistakenly absorb calcium as a substitute, causing calcium abnormalities. Thus, there is a mutual effect between iron and calcium in fungal pathogens, and the combination of calcium with an iron chelator could serve to improve antifungal therapy. IMPORTANCE Millions of immunocompromised people are at a higher risk of developing different types of severe fungal diseases. The limited number of antifungals and the emergence of antimicrobial resistance highlight an urgent need for new strategies against invasive fungal infections. Here, we report that calcium can interfere with iron absorption of fungal pathogens, especially in iron-limited environments. Thus, a combination of calcium supplementation with an iron chelator inhibits the growth of human fungal pathogens, including Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Moreover, we demonstrate that iron deficiency induces a nonspecific calcium uptake response, which results in toxic levels of metal. Findings in this study suggest that a microenvironment with excess calcium and limited iron is an efficient strategy to curb the growth of fungal pathogens, especially for drug-resistant isolates. |
format | Online Article Text |
id | pubmed-9241635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-92416352022-06-30 Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation Ye, Jing Wang, Yamei Li, Xinyu Wan, Qinyi Zhang, Yuanwei Lu, Ling Microbiol Spectr Research Article Fungal diseases have become a major public health issue worldwide. Increasing drug resistance and the limited number of available antifungals result in high morbidity and mortality. Metal-based drugs have been reported to be therapeutic agents against major protozoan diseases, but knowledge of their ability to function as antifungals is limited. In this study, we found that calcium supplementation combined with iron deficiency causes dramatic growth inhibition of the human fungal pathogens Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Calcium induces the downregulation of iron uptake-related genes and, in particular, causes a decrease in the expression of the transcription factor HapX, which tends to transcriptionally activate siderophore-mediated iron acquisition under iron-deficient conditions. Iron deficiency causes calcium overload and the overproduction of intracellular reactive oxygen species (ROS), and perturbed ion homeostasis suppresses fungal growth. These phenomena are consistently identified in azole-resistant A. fumigatus isolates. The findings here imply that low iron availability lets cells mistakenly absorb calcium as a substitute, causing calcium abnormalities. Thus, there is a mutual effect between iron and calcium in fungal pathogens, and the combination of calcium with an iron chelator could serve to improve antifungal therapy. IMPORTANCE Millions of immunocompromised people are at a higher risk of developing different types of severe fungal diseases. The limited number of antifungals and the emergence of antimicrobial resistance highlight an urgent need for new strategies against invasive fungal infections. Here, we report that calcium can interfere with iron absorption of fungal pathogens, especially in iron-limited environments. Thus, a combination of calcium supplementation with an iron chelator inhibits the growth of human fungal pathogens, including Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Moreover, we demonstrate that iron deficiency induces a nonspecific calcium uptake response, which results in toxic levels of metal. Findings in this study suggest that a microenvironment with excess calcium and limited iron is an efficient strategy to curb the growth of fungal pathogens, especially for drug-resistant isolates. American Society for Microbiology 2022-06-08 /pmc/articles/PMC9241635/ /pubmed/35674440 http://dx.doi.org/10.1128/spectrum.01121-22 Text en Copyright © 2022 Ye et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Ye, Jing Wang, Yamei Li, Xinyu Wan, Qinyi Zhang, Yuanwei Lu, Ling Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation |
title | Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation |
title_full | Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation |
title_fullStr | Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation |
title_full_unstemmed | Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation |
title_short | Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation |
title_sort | synergistic antifungal effect of a combination of iron deficiency and calcium supplementation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241635/ https://www.ncbi.nlm.nih.gov/pubmed/35674440 http://dx.doi.org/10.1128/spectrum.01121-22 |
work_keys_str_mv | AT yejing synergisticantifungaleffectofacombinationofirondeficiencyandcalciumsupplementation AT wangyamei synergisticantifungaleffectofacombinationofirondeficiencyandcalciumsupplementation AT lixinyu synergisticantifungaleffectofacombinationofirondeficiencyandcalciumsupplementation AT wanqinyi synergisticantifungaleffectofacombinationofirondeficiencyandcalciumsupplementation AT zhangyuanwei synergisticantifungaleffectofacombinationofirondeficiencyandcalciumsupplementation AT luling synergisticantifungaleffectofacombinationofirondeficiencyandcalciumsupplementation |