Cargando…
rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of Undiagnosed Structural Heart Disease Detectable by Echocardiography
BACKGROUND: Timely diagnosis of structural heart disease improves patient outcomes, yet many remain underdiagnosed. While population screening with echocardiography is impractical, ECG-based prediction models can help target high-risk patients. We developed a novel ECG-based machine learning approac...
Autores principales: | Ulloa-Cerna, Alvaro E., Jing, Linyuan, Pfeifer, John M., Raghunath, Sushravya, Ruhl, Jeffrey A., Rocha, Daniel B., Leader, Joseph B., Zimmerman, Noah, Lee, Greg, Steinhubl, Steven R., Good, Christopher W., Haggerty, Christopher M., Fornwalt, Brandon K., Chen, Ruijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241668/ https://www.ncbi.nlm.nih.gov/pubmed/35533093 http://dx.doi.org/10.1161/CIRCULATIONAHA.121.057869 |
Ejemplares similares
-
Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation–Related Stroke
por: Raghunath, Sushravya, et al.
Publicado: (2021) -
OASIS +: leveraging machine learning to improve the prognostic accuracy of OASIS severity score for predicting in-hospital mortality
por: EL-Manzalawy, Yasser, et al.
Publicado: (2021) -
Chronic kidney disease and undiagnosed atrial fibrillation in individuals with diabetes
por: Heo, Nam Ju, et al.
Publicado: (2020) -
Construction of wavelet dictionaries for ECG modeling
por: Černá, Dana, et al.
Publicado: (2021) -
Diagnostic Yield of Echocardiography in Syncope Patients with Normal ECG
por: Chang, Nai-Lun, et al.
Publicado: (2016)