Cargando…
Recent Genetic Changes Affecting Enterohemorrhagic Escherichia coli Causing Recurrent Outbreaks
Enterohemorrhagic E. coli (EHEC) is responsible for significant human illness, death, and economic loss. The main reservoir for EHEC is cattle, but plant-based foods are common vectors for human infection. Several outbreaks have been attributed to lettuce and leafy green vegetables grown in the Sali...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241674/ https://www.ncbi.nlm.nih.gov/pubmed/35467376 http://dx.doi.org/10.1128/spectrum.00501-22 |
Sumario: | Enterohemorrhagic E. coli (EHEC) is responsible for significant human illness, death, and economic loss. The main reservoir for EHEC is cattle, but plant-based foods are common vectors for human infection. Several outbreaks have been attributed to lettuce and leafy green vegetables grown in the Salinas and Santa Maria regions of California. Bacteria causing different outbreaks are mostly not close relatives, but one group of closely-related O157:H7 has caused several of them. This unusual pattern of recurrence may have some genetic basis. Here I use whole-genome sequences to reconstruct the genetic changes that occurred in the recent ancestry of this EHEC. In a short period of time corresponding to little genetic change, there were several changes to adhesion-related sequences, mainly adhesins. These changes may have greatly altered the adhesive properties of the bacteria. Possible consequences include increased persistence of cattle infections, more bacteria shed in cattle feces, and greater virulence in humans. Similar constellations of genetic change, which are detectable by current sequencing-based surveillance, may identify other bacteria that are particular threats to human health. In addition, the Santa Maria subclade carries a nonsense mutation affecting ArsR, a repressor of genes that confer resistance to arsenic and antimony. This suggests that the persistent source of Santa Maria contamination is located in an area with arsenic-contaminated groundwater, a problem in many parts of California. This inference may aid identification of the reservoir of EHEC, which would greatly aid mitigation efforts. IMPORTANCE Food-borne bacterial infections cause substantial illness and death. Understanding how bacteria contaminate food and cause disease is important for combating the problem. Closely-related E. coli, likely originating in cattle, have repeatedly caused outbreaks spread by vegetables grown in California. Such recurrence is atypical, and might have a genetic basis. The genetic changes that occurred in the recent ancestry of these E. coli can be reconstructed from their DNA sequences. Several mutations affect genes involved in bacterial adhesion. These might affect persistence of infection in cattle, quantity of bacteria in their feces, and human disease. They also suggest a way of detecting dangerous bacteria from their genome sequences. Furthermore, a subgroup carries a mutation affecting the regulation of genes conferring arsenic resistance. This suggests that the reservoir for contamination utilizes groundwater contaminated with arsenic, a problem in parts of California. This observation may be an aid to locating the persistent reservoir of contamination. |
---|