Cargando…

Molecular Identification of Cervical Microbes in HIV-Negative and HIV-Positive Women in an African Setting Using a Customized Bacterial Vaginosis Microbial DNA Quantitative PCR (qPCR) Array

Bacterial vaginosis (BV) is a common polymicrobial vaginal disorder that is associated with sexually transmitted infections (STIs), including HIV. Several studies have utilized broad-range 16S rRNA gene PCR assays with sequence analysis to characterize cervicovaginal bacterial communities of women w...

Descripción completa

Detalles Bibliográficos
Autores principales: Taku, Ongeziwe, Onywera, Harris, Mbulawa, Zizipho Z. A., Businge, Charles B., Meiring, Tracy L., Williamson, Anna-Lise
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241767/
https://www.ncbi.nlm.nih.gov/pubmed/35647888
http://dx.doi.org/10.1128/spectrum.02229-21
_version_ 1784737888675561472
author Taku, Ongeziwe
Onywera, Harris
Mbulawa, Zizipho Z. A.
Businge, Charles B.
Meiring, Tracy L.
Williamson, Anna-Lise
author_facet Taku, Ongeziwe
Onywera, Harris
Mbulawa, Zizipho Z. A.
Businge, Charles B.
Meiring, Tracy L.
Williamson, Anna-Lise
author_sort Taku, Ongeziwe
collection PubMed
description Bacterial vaginosis (BV) is a common polymicrobial vaginal disorder that is associated with sexually transmitted infections (STIs), including HIV. Several studies have utilized broad-range 16S rRNA gene PCR assays with sequence analysis to characterize cervicovaginal bacterial communities of women with healthy and diseased conditions. With the high burden of BV and STIs among African women, there is a need for targeted PCR assays that can rapidly determine the true epidemiological profile of key cervical microbes, including BV-associated bacteria, and a need to explore the utility of such assays for microbiological diagnosis of BV. Here, we used a taxon-directed 16S rRNA gene quantitative PCR (qPCR) assay to examine the prevalences and determinants of specific cervical microbes among African women with and without HIV infection. Cervical samples were collected using a cytobrush from 162 women (aged ≥30 years) attending a community-based clinic in Eastern Cape, South Africa. The samples were screened for specific microbes (i.e., STIs, emerging sexually transmitted pathogens [pathobionts], and BV-associated bacteria) using a customized bacterial vaginosis microbial DNA qPCR array. Statistical analyses were performed using GraphPad Prism v6.01. Chi-square/Fisher’s exact tests were used to evaluate the determinants associated with specific cervical microbes. Only 145 women had any detectable microbes and were included in the analysis. Lactobacillus iners (62.8%) and specific BV-associated bacteria, namely, Gardnerella vaginalis (58.6%), Atopobium vaginae (40.7%), and the pathobiont Ureaplasma parvum (37.9%), were the most prevalent microbes. Hierarchical clustering analysis revealed that 42.8% of the women (62/145) had a diverse array of heterogeneously distributed bacteria typically linked to BV. Women with detectable Lactobacillus species, specifically Lactobacillus crispatus and Lactobacillus jensenii, and to a lesser extent L. iners, had very low prevalence of BV-associated bacteria. Although the cumulative burden of STIs/pathobionts was 62.8%, Chlamydia trachomatis (3.4%), Neisseria gonorrhoeae (4.8%), and Trichomonas vaginalis (4.8%) were detected at low rates. HIV infection was associated with the presence of STIs/pathobionts (P = 0.022) and L. iners (P = 0.003). Prevalent STIs/pathobionts were associated with having multiple partners in the past 12 months (n ≥ 2, P = 0.015), high number of lifetime sexual partners (n ≥ 3, P = 0.007), vaginal sex in the past month (P = 0.010), and decreasing age of women (P = 0.005). C. trachomatis was associated with increasing age among HIV-positive women (P = 0.016). The pathobiont Ureaplasma urealyticum was inversely associated with age of women in the whole cohort (P = 0.018). The overall prevalence of STIs/pathobionts was high and was associated with HIV infection and sexual behavior. Our study helps us to understand the epidemiological trend of STIs and pathobionts and highlights the need to understand the impact of sexual networks on STI and pathobiont transmission and prevention among women in an African setting. IMPORTANCE Bacterial vaginosis (BV), whose etiology remains a matter of controversy, is a common vaginal disorder among reproductive-age women and can increase the risk for sexually transmitted infections (STIs). African women bear a disproportionately high burden of STIs and BV. Using a targeted quantitative PCR (qPCR) assay, a customized bacterial vaginosis microbial DNA qPCR array, we examined the prevalences and determinants of key cervical microbes, including BV-associated bacteria and emerging sexually transmitted pathogens (pathobionts) among women of African descent aged between 30 and 75 years. High-risk behaviors were associated with a higher prevalence of STIs/pathobionts, suggesting the need to better understand the influence of sexual networks on STI and pathobiont transmission and prevention among women. Our molecular assay is important in the surveillance of BV-associated bacteria, pathobionts, and STIs as well as diagnostic microbiology of BV. Furthermore, our research contributes to a better understanding of the epidemiology of STIs and pathobionts in Africa.
format Online
Article
Text
id pubmed-9241767
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-92417672022-06-30 Molecular Identification of Cervical Microbes in HIV-Negative and HIV-Positive Women in an African Setting Using a Customized Bacterial Vaginosis Microbial DNA Quantitative PCR (qPCR) Array Taku, Ongeziwe Onywera, Harris Mbulawa, Zizipho Z. A. Businge, Charles B. Meiring, Tracy L. Williamson, Anna-Lise Microbiol Spectr Research Article Bacterial vaginosis (BV) is a common polymicrobial vaginal disorder that is associated with sexually transmitted infections (STIs), including HIV. Several studies have utilized broad-range 16S rRNA gene PCR assays with sequence analysis to characterize cervicovaginal bacterial communities of women with healthy and diseased conditions. With the high burden of BV and STIs among African women, there is a need for targeted PCR assays that can rapidly determine the true epidemiological profile of key cervical microbes, including BV-associated bacteria, and a need to explore the utility of such assays for microbiological diagnosis of BV. Here, we used a taxon-directed 16S rRNA gene quantitative PCR (qPCR) assay to examine the prevalences and determinants of specific cervical microbes among African women with and without HIV infection. Cervical samples were collected using a cytobrush from 162 women (aged ≥30 years) attending a community-based clinic in Eastern Cape, South Africa. The samples were screened for specific microbes (i.e., STIs, emerging sexually transmitted pathogens [pathobionts], and BV-associated bacteria) using a customized bacterial vaginosis microbial DNA qPCR array. Statistical analyses were performed using GraphPad Prism v6.01. Chi-square/Fisher’s exact tests were used to evaluate the determinants associated with specific cervical microbes. Only 145 women had any detectable microbes and were included in the analysis. Lactobacillus iners (62.8%) and specific BV-associated bacteria, namely, Gardnerella vaginalis (58.6%), Atopobium vaginae (40.7%), and the pathobiont Ureaplasma parvum (37.9%), were the most prevalent microbes. Hierarchical clustering analysis revealed that 42.8% of the women (62/145) had a diverse array of heterogeneously distributed bacteria typically linked to BV. Women with detectable Lactobacillus species, specifically Lactobacillus crispatus and Lactobacillus jensenii, and to a lesser extent L. iners, had very low prevalence of BV-associated bacteria. Although the cumulative burden of STIs/pathobionts was 62.8%, Chlamydia trachomatis (3.4%), Neisseria gonorrhoeae (4.8%), and Trichomonas vaginalis (4.8%) were detected at low rates. HIV infection was associated with the presence of STIs/pathobionts (P = 0.022) and L. iners (P = 0.003). Prevalent STIs/pathobionts were associated with having multiple partners in the past 12 months (n ≥ 2, P = 0.015), high number of lifetime sexual partners (n ≥ 3, P = 0.007), vaginal sex in the past month (P = 0.010), and decreasing age of women (P = 0.005). C. trachomatis was associated with increasing age among HIV-positive women (P = 0.016). The pathobiont Ureaplasma urealyticum was inversely associated with age of women in the whole cohort (P = 0.018). The overall prevalence of STIs/pathobionts was high and was associated with HIV infection and sexual behavior. Our study helps us to understand the epidemiological trend of STIs and pathobionts and highlights the need to understand the impact of sexual networks on STI and pathobiont transmission and prevention among women in an African setting. IMPORTANCE Bacterial vaginosis (BV), whose etiology remains a matter of controversy, is a common vaginal disorder among reproductive-age women and can increase the risk for sexually transmitted infections (STIs). African women bear a disproportionately high burden of STIs and BV. Using a targeted quantitative PCR (qPCR) assay, a customized bacterial vaginosis microbial DNA qPCR array, we examined the prevalences and determinants of key cervical microbes, including BV-associated bacteria and emerging sexually transmitted pathogens (pathobionts) among women of African descent aged between 30 and 75 years. High-risk behaviors were associated with a higher prevalence of STIs/pathobionts, suggesting the need to better understand the influence of sexual networks on STI and pathobiont transmission and prevention among women. Our molecular assay is important in the surveillance of BV-associated bacteria, pathobionts, and STIs as well as diagnostic microbiology of BV. Furthermore, our research contributes to a better understanding of the epidemiology of STIs and pathobionts in Africa. American Society for Microbiology 2022-06-01 /pmc/articles/PMC9241767/ /pubmed/35647888 http://dx.doi.org/10.1128/spectrum.02229-21 Text en Copyright © 2022 Taku et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Taku, Ongeziwe
Onywera, Harris
Mbulawa, Zizipho Z. A.
Businge, Charles B.
Meiring, Tracy L.
Williamson, Anna-Lise
Molecular Identification of Cervical Microbes in HIV-Negative and HIV-Positive Women in an African Setting Using a Customized Bacterial Vaginosis Microbial DNA Quantitative PCR (qPCR) Array
title Molecular Identification of Cervical Microbes in HIV-Negative and HIV-Positive Women in an African Setting Using a Customized Bacterial Vaginosis Microbial DNA Quantitative PCR (qPCR) Array
title_full Molecular Identification of Cervical Microbes in HIV-Negative and HIV-Positive Women in an African Setting Using a Customized Bacterial Vaginosis Microbial DNA Quantitative PCR (qPCR) Array
title_fullStr Molecular Identification of Cervical Microbes in HIV-Negative and HIV-Positive Women in an African Setting Using a Customized Bacterial Vaginosis Microbial DNA Quantitative PCR (qPCR) Array
title_full_unstemmed Molecular Identification of Cervical Microbes in HIV-Negative and HIV-Positive Women in an African Setting Using a Customized Bacterial Vaginosis Microbial DNA Quantitative PCR (qPCR) Array
title_short Molecular Identification of Cervical Microbes in HIV-Negative and HIV-Positive Women in an African Setting Using a Customized Bacterial Vaginosis Microbial DNA Quantitative PCR (qPCR) Array
title_sort molecular identification of cervical microbes in hiv-negative and hiv-positive women in an african setting using a customized bacterial vaginosis microbial dna quantitative pcr (qpcr) array
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241767/
https://www.ncbi.nlm.nih.gov/pubmed/35647888
http://dx.doi.org/10.1128/spectrum.02229-21
work_keys_str_mv AT takuongeziwe molecularidentificationofcervicalmicrobesinhivnegativeandhivpositivewomeninanafricansettingusingacustomizedbacterialvaginosismicrobialdnaquantitativepcrqpcrarray
AT onyweraharris molecularidentificationofcervicalmicrobesinhivnegativeandhivpositivewomeninanafricansettingusingacustomizedbacterialvaginosismicrobialdnaquantitativepcrqpcrarray
AT mbulawaziziphoza molecularidentificationofcervicalmicrobesinhivnegativeandhivpositivewomeninanafricansettingusingacustomizedbacterialvaginosismicrobialdnaquantitativepcrqpcrarray
AT busingecharlesb molecularidentificationofcervicalmicrobesinhivnegativeandhivpositivewomeninanafricansettingusingacustomizedbacterialvaginosismicrobialdnaquantitativepcrqpcrarray
AT meiringtracyl molecularidentificationofcervicalmicrobesinhivnegativeandhivpositivewomeninanafricansettingusingacustomizedbacterialvaginosismicrobialdnaquantitativepcrqpcrarray
AT williamsonannalise molecularidentificationofcervicalmicrobesinhivnegativeandhivpositivewomeninanafricansettingusingacustomizedbacterialvaginosismicrobialdnaquantitativepcrqpcrarray