Cargando…
Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas
Mycoplasmas are the smallest free-living organisms. These bacteria are important models for both fundamental and synthetic biology, owing to their highly reduced genomes. They are also relevant in the medical and veterinary fields, as they are pathogenic to both humans and most livestock species. My...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241803/ https://www.ncbi.nlm.nih.gov/pubmed/35638916 http://dx.doi.org/10.1128/spectrum.00645-22 |
_version_ | 1784737898311974912 |
---|---|
author | Rideau, Fabien Villa, Audrey Belzanne, Pauline Verdier, Emeline Hosy, Eric Arfi, Yonathan |
author_facet | Rideau, Fabien Villa, Audrey Belzanne, Pauline Verdier, Emeline Hosy, Eric Arfi, Yonathan |
author_sort | Rideau, Fabien |
collection | PubMed |
description | Mycoplasmas are the smallest free-living organisms. These bacteria are important models for both fundamental and synthetic biology, owing to their highly reduced genomes. They are also relevant in the medical and veterinary fields, as they are pathogenic to both humans and most livestock species. Mycoplasma cells have minute sizes, often in the 300- to 800-nm range. As these dimensions are close to the diffraction limit of visible light, fluorescence imaging in mycoplasmas is often poorly informative. Recently developed superresolution imaging techniques can break this diffraction limit, improving the imaging resolution by an order of magnitude and offering a new nanoscale vision of the organization of these bacteria. These techniques have, however, not been applied to mycoplasmas before. Here, we describe an efficient and reliable protocol to perform single-molecule localization microscopy (SMLM) imaging in mycoplasmas. We provide a polyvalent transposon-based system to express the photoconvertible fluorescent protein mEos3.2, enabling photo-activated localization microscopy (PALM) in most Mycoplasma species. We also describe the application of direct stochastic optical reconstruction microscopy (dSTORM). We showcase the potential of these techniques by studying the subcellular localization of two proteins of interest. Our work highlights the benefits of state-of-the-art microscopy techniques for mycoplasmology and provides an incentive to further the development of SMLM strategies to study these organisms in the future. IMPORTANCE Mycoplasmas are important models in biology, as well as highly problematic pathogens in the medical and veterinary fields. The very small sizes of these bacteria, well below a micron, limits the usefulness of traditional fluorescence imaging methods, as their resolution limit is similar to the dimensions of the cells. Here, to bypass this issue, we established a set of state-of-the-art superresolution microscopy techniques in a wide range of Mycoplasma species. We describe two strategies: PALM, based on the expression of a specific photoconvertible fluorescent protein, and dSTORM, based on fluorophore-coupled antibody labeling. With these methods, we successfully performed single-molecule imaging of proteins of interest at the surface of the cells and in the cytoplasm, at lateral resolutions well below 50 nm. Our work paves the way toward a better understanding of mycoplasma biology through imaging of subcellular structures at the nanometer scale. |
format | Online Article Text |
id | pubmed-9241803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-92418032022-06-30 Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas Rideau, Fabien Villa, Audrey Belzanne, Pauline Verdier, Emeline Hosy, Eric Arfi, Yonathan Microbiol Spectr Research Article Mycoplasmas are the smallest free-living organisms. These bacteria are important models for both fundamental and synthetic biology, owing to their highly reduced genomes. They are also relevant in the medical and veterinary fields, as they are pathogenic to both humans and most livestock species. Mycoplasma cells have minute sizes, often in the 300- to 800-nm range. As these dimensions are close to the diffraction limit of visible light, fluorescence imaging in mycoplasmas is often poorly informative. Recently developed superresolution imaging techniques can break this diffraction limit, improving the imaging resolution by an order of magnitude and offering a new nanoscale vision of the organization of these bacteria. These techniques have, however, not been applied to mycoplasmas before. Here, we describe an efficient and reliable protocol to perform single-molecule localization microscopy (SMLM) imaging in mycoplasmas. We provide a polyvalent transposon-based system to express the photoconvertible fluorescent protein mEos3.2, enabling photo-activated localization microscopy (PALM) in most Mycoplasma species. We also describe the application of direct stochastic optical reconstruction microscopy (dSTORM). We showcase the potential of these techniques by studying the subcellular localization of two proteins of interest. Our work highlights the benefits of state-of-the-art microscopy techniques for mycoplasmology and provides an incentive to further the development of SMLM strategies to study these organisms in the future. IMPORTANCE Mycoplasmas are important models in biology, as well as highly problematic pathogens in the medical and veterinary fields. The very small sizes of these bacteria, well below a micron, limits the usefulness of traditional fluorescence imaging methods, as their resolution limit is similar to the dimensions of the cells. Here, to bypass this issue, we established a set of state-of-the-art superresolution microscopy techniques in a wide range of Mycoplasma species. We describe two strategies: PALM, based on the expression of a specific photoconvertible fluorescent protein, and dSTORM, based on fluorophore-coupled antibody labeling. With these methods, we successfully performed single-molecule imaging of proteins of interest at the surface of the cells and in the cytoplasm, at lateral resolutions well below 50 nm. Our work paves the way toward a better understanding of mycoplasma biology through imaging of subcellular structures at the nanometer scale. American Society for Microbiology 2022-05-31 /pmc/articles/PMC9241803/ /pubmed/35638916 http://dx.doi.org/10.1128/spectrum.00645-22 Text en Copyright © 2022 Rideau et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Rideau, Fabien Villa, Audrey Belzanne, Pauline Verdier, Emeline Hosy, Eric Arfi, Yonathan Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas |
title | Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas |
title_full | Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas |
title_fullStr | Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas |
title_full_unstemmed | Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas |
title_short | Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas |
title_sort | imaging minimal bacteria at the nanoscale: a reliable and versatile process to perform single-molecule localization microscopy in mycoplasmas |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241803/ https://www.ncbi.nlm.nih.gov/pubmed/35638916 http://dx.doi.org/10.1128/spectrum.00645-22 |
work_keys_str_mv | AT rideaufabien imagingminimalbacteriaatthenanoscaleareliableandversatileprocesstoperformsinglemoleculelocalizationmicroscopyinmycoplasmas AT villaaudrey imagingminimalbacteriaatthenanoscaleareliableandversatileprocesstoperformsinglemoleculelocalizationmicroscopyinmycoplasmas AT belzannepauline imagingminimalbacteriaatthenanoscaleareliableandversatileprocesstoperformsinglemoleculelocalizationmicroscopyinmycoplasmas AT verdieremeline imagingminimalbacteriaatthenanoscaleareliableandversatileprocesstoperformsinglemoleculelocalizationmicroscopyinmycoplasmas AT hosyeric imagingminimalbacteriaatthenanoscaleareliableandversatileprocesstoperformsinglemoleculelocalizationmicroscopyinmycoplasmas AT arfiyonathan imagingminimalbacteriaatthenanoscaleareliableandversatileprocesstoperformsinglemoleculelocalizationmicroscopyinmycoplasmas |