Cargando…

Experimental Quantification of Gas Dispersion in 3D-Printed Logpile Structures Using a Noninvasive Infrared Transmission Technique

[Image: see text] 3D-printed catalyst structures have the potential to broaden reactor operating windows. However, the hydrodynamic aspects associated with these novel catalyst structures have not yet been quantified in detail. This work applies a recently introduced noninvasive, instantaneous, whol...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosseau, Leon R.S., Schinkel, Merlijn A.M.R., Roghair, Ivo, van Sint Annaland, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242522/
https://www.ncbi.nlm.nih.gov/pubmed/35781935
http://dx.doi.org/10.1021/acsengineeringau.1c00040
Descripción
Sumario:[Image: see text] 3D-printed catalyst structures have the potential to broaden reactor operating windows. However, the hydrodynamic aspects associated with these novel catalyst structures have not yet been quantified in detail. This work applies a recently introduced noninvasive, instantaneous, whole-field concentration measurement technique based on infrared transmission to quantify the rate of transverse gas dispersion in 3D-printed logpile structures. Twenty-two structural variations have been investigated at various operating conditions, and the measured transverse gas dispersion has been correlated to the Péclet number and the structures’ porosity and feature size. It is shown that staggered configurations of these logpile structures offer significantly more tunability of the dispersion behavior compared to straight structures. The proposed correlations can be used to facilitate considerations of reactor design and operating windows.