Cargando…

Temporal Regulation of Gene Expression in Post-Mitotic Cells is Revealed from a Synchronized Population of C. elegans Larvae

Unsupervised Uniform Manifold Approximation and Projection (UMAP) plots of single cell sequencing data from synchronized Caenorhabditis elegans larvae yield tissue-specific data clusters, some of which are plotted as elongated archipelagos. These archipelagos likely represent a single cell type. I s...

Descripción completa

Detalles Bibliográficos
Autor principal: Roy, Peter J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Caltech Library 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242692/
https://www.ncbi.nlm.nih.gov/pubmed/35783576
http://dx.doi.org/10.17912/micropub.biology.000587
Descripción
Sumario:Unsupervised Uniform Manifold Approximation and Projection (UMAP) plots of single cell sequencing data from synchronized Caenorhabditis elegans larvae yield tissue-specific data clusters, some of which are plotted as elongated archipelagos. These archipelagos likely represent a single cell type. I show that the pharyngeal archipelagos express a myriad of asynchronous temporally regulated genes, which likely accounts for their elongated topology. With one archipelago, I show that there is a high correlation between a) the base pair distance between the binding sites of an archipelago-specific transcription factor (HLH-6) and the transcriptional start site of the targeted genes and b) the timing of peak gene expression of those genes that are expressed in an archipelago-specific manner. Despite the correlation being made with only four genes, it prompts the hypothesis that the physical distance between a transcription factor and the relevant transcription start site may be an important factor in determining the temporal onset of transcription and transcript abundance.