Cargando…
Radiomics Model Based on Enhanced Gradient Level Set Segmentation Algorithm to Predict the Prognosis of Endoscopic Treatment of Sinusitis
METHODS: Computed tomography (CT) images of sinusitis in 91 patients were collected. By introducing boundary gradient information into the edge detection function, the sensitivity of the level set model to the boundary of different intensities of lesions was adjusted to obtain accurate segmentation...
Autores principales: | Li, Yabing, Tao, Ye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242818/ https://www.ncbi.nlm.nih.gov/pubmed/35785138 http://dx.doi.org/10.1155/2022/9511631 |
Ejemplares similares
-
The Algorithm of Watershed Color Image Segmentation Based on Morphological Gradient
por: Wu, Yanyan, et al.
Publicado: (2022) -
Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI
por: Pak, Elena, et al.
Publicado: (2021) -
A radiomics model enables prediction venous sinus invasion in meningioma
por: Wang, Limei, et al.
Publicado: (2023) -
A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting
por: Shin, Jaeseung, et al.
Publicado: (2021) -
Adaptive Localizing Region-Based Level Set for Segmentation of Maxillary Sinus Based on Convolutional Neural Networks
por: Qi, Xianglong, et al.
Publicado: (2021)