Cargando…

Fault-tolerant operation of a logical qubit in a diamond quantum processor

Solid-state spin qubits is a promising platform for quantum computation and quantum networks(1,2). Recent experiments have demonstrated high-quality control over multi-qubit systems(3–8), elementary quantum algorithms(8–11) and non-fault-tolerant error correction(12–14). Large-scale systems will req...

Descripción completa

Detalles Bibliográficos
Autores principales: Abobeih, M. H., Wang, Y., Randall, J., Loenen, S. J. H., Bradley, C. E., Markham, M., Twitchen, D. J., Terhal, B. M., Taminiau, T. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242857/
https://www.ncbi.nlm.nih.gov/pubmed/35512730
http://dx.doi.org/10.1038/s41586-022-04819-6
_version_ 1784738151185514496
author Abobeih, M. H.
Wang, Y.
Randall, J.
Loenen, S. J. H.
Bradley, C. E.
Markham, M.
Twitchen, D. J.
Terhal, B. M.
Taminiau, T. H.
author_facet Abobeih, M. H.
Wang, Y.
Randall, J.
Loenen, S. J. H.
Bradley, C. E.
Markham, M.
Twitchen, D. J.
Terhal, B. M.
Taminiau, T. H.
author_sort Abobeih, M. H.
collection PubMed
description Solid-state spin qubits is a promising platform for quantum computation and quantum networks(1,2). Recent experiments have demonstrated high-quality control over multi-qubit systems(3–8), elementary quantum algorithms(8–11) and non-fault-tolerant error correction(12–14). Large-scale systems will require using error-corrected logical qubits that are operated fault tolerantly, so that reliable computation becomes possible despite noisy operations(15–18). Overcoming imperfections in this way remains an important outstanding challenge for quantum science(15,19–27). Here, we demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond. Our approach is based on the five-qubit code with a recently discovered flag protocol that enables fault tolerance using a total of seven qubits(28–30). We encode the logical qubit using a new protocol based on repeated multi-qubit measurements and show that it outperforms non-fault-tolerant encoding schemes. We then fault-tolerantly manipulate the logical qubit through a complete set of single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements with real-time processing of the outcomes. Such measurements are a primitive for fault-tolerant quantum error correction. Although future improvements in fidelity and the number of qubits will be required to suppress logical error rates below the physical error rates, our realization of fault-tolerant protocols on the logical-qubit level is a key step towards quantum information processing based on solid-state spins.
format Online
Article
Text
id pubmed-9242857
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92428572022-07-01 Fault-tolerant operation of a logical qubit in a diamond quantum processor Abobeih, M. H. Wang, Y. Randall, J. Loenen, S. J. H. Bradley, C. E. Markham, M. Twitchen, D. J. Terhal, B. M. Taminiau, T. H. Nature Article Solid-state spin qubits is a promising platform for quantum computation and quantum networks(1,2). Recent experiments have demonstrated high-quality control over multi-qubit systems(3–8), elementary quantum algorithms(8–11) and non-fault-tolerant error correction(12–14). Large-scale systems will require using error-corrected logical qubits that are operated fault tolerantly, so that reliable computation becomes possible despite noisy operations(15–18). Overcoming imperfections in this way remains an important outstanding challenge for quantum science(15,19–27). Here, we demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond. Our approach is based on the five-qubit code with a recently discovered flag protocol that enables fault tolerance using a total of seven qubits(28–30). We encode the logical qubit using a new protocol based on repeated multi-qubit measurements and show that it outperforms non-fault-tolerant encoding schemes. We then fault-tolerantly manipulate the logical qubit through a complete set of single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements with real-time processing of the outcomes. Such measurements are a primitive for fault-tolerant quantum error correction. Although future improvements in fidelity and the number of qubits will be required to suppress logical error rates below the physical error rates, our realization of fault-tolerant protocols on the logical-qubit level is a key step towards quantum information processing based on solid-state spins. Nature Publishing Group UK 2022-05-05 2022 /pmc/articles/PMC9242857/ /pubmed/35512730 http://dx.doi.org/10.1038/s41586-022-04819-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Abobeih, M. H.
Wang, Y.
Randall, J.
Loenen, S. J. H.
Bradley, C. E.
Markham, M.
Twitchen, D. J.
Terhal, B. M.
Taminiau, T. H.
Fault-tolerant operation of a logical qubit in a diamond quantum processor
title Fault-tolerant operation of a logical qubit in a diamond quantum processor
title_full Fault-tolerant operation of a logical qubit in a diamond quantum processor
title_fullStr Fault-tolerant operation of a logical qubit in a diamond quantum processor
title_full_unstemmed Fault-tolerant operation of a logical qubit in a diamond quantum processor
title_short Fault-tolerant operation of a logical qubit in a diamond quantum processor
title_sort fault-tolerant operation of a logical qubit in a diamond quantum processor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242857/
https://www.ncbi.nlm.nih.gov/pubmed/35512730
http://dx.doi.org/10.1038/s41586-022-04819-6
work_keys_str_mv AT abobeihmh faulttolerantoperationofalogicalqubitinadiamondquantumprocessor
AT wangy faulttolerantoperationofalogicalqubitinadiamondquantumprocessor
AT randallj faulttolerantoperationofalogicalqubitinadiamondquantumprocessor
AT loenensjh faulttolerantoperationofalogicalqubitinadiamondquantumprocessor
AT bradleyce faulttolerantoperationofalogicalqubitinadiamondquantumprocessor
AT markhamm faulttolerantoperationofalogicalqubitinadiamondquantumprocessor
AT twitchendj faulttolerantoperationofalogicalqubitinadiamondquantumprocessor
AT terhalbm faulttolerantoperationofalogicalqubitinadiamondquantumprocessor
AT taminiauth faulttolerantoperationofalogicalqubitinadiamondquantumprocessor