Cargando…
Mathematical modelling of cross-linked polyacrylic-based hydrogels: physical properties and drug delivery
Recently, hydrogels have gained significant importance in different applications, such as tissue engineering and drug delivery. They are 3D structures of hydrophilic polymers held together through physical or chemical crosslinking. Important is their ability to swell in presence of solvents, forming...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9242946/ https://www.ncbi.nlm.nih.gov/pubmed/35152363 http://dx.doi.org/10.1007/s13346-022-01129-2 |
Sumario: | Recently, hydrogels have gained significant importance in different applications, such as tissue engineering and drug delivery. They are 3D structures of hydrophilic polymers held together through physical or chemical crosslinking. Important is their ability to swell in presence of solvents, forming elastic gels able to maintain their original shape. Furthermore, these scaffolds slowly degrade in the physiological environment, leading the growing tissue to replace the former filled site. In this work, hydrogels have been synthetized using branched polyacrylic acid (carbomer) cross-linked with an aliphatic polyetherdiamine (elastamine). In particular, we focused on the description of their equilibrium conditions in swollen state and the dynamic simulation of the swelling process. These hydrogels exhibited a peculiar swelling behaviour characterized by an overshoot of the volume increase before reaching the equilibrium. Notably, such behaviour was found at different pH values. In this manuscript, the swelling behaviour was studied by mathematical modelling. Moreover, the ability of these devices to release drugs was also examined through a literature model to understand the different operating transport mechanisms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13346-022-01129-2. |
---|