Cargando…
Smartphone camera based assessment of adiposity: a validation study
Body composition is a key component of health in both individuals and populations, and excess adiposity is associated with an increased risk of developing chronic diseases. Body mass index (BMI) and other clinical or commercially available tools for quantifying body fat (BF) such as DXA, MRI, CT, an...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243018/ https://www.ncbi.nlm.nih.gov/pubmed/35768575 http://dx.doi.org/10.1038/s41746-022-00628-3 |
_version_ | 1784738208681033728 |
---|---|
author | Majmudar, Maulik D. Chandra, Siddhartha Yakkala, Kiran Kennedy, Samantha Agrawal, Amit Sippel, Mark Ramu, Prakash Chaudhri, Apoorv Smith, Brooke Criminisi, Antonio Heymsfield, Steven B. Stanford, Fatima Cody |
author_facet | Majmudar, Maulik D. Chandra, Siddhartha Yakkala, Kiran Kennedy, Samantha Agrawal, Amit Sippel, Mark Ramu, Prakash Chaudhri, Apoorv Smith, Brooke Criminisi, Antonio Heymsfield, Steven B. Stanford, Fatima Cody |
author_sort | Majmudar, Maulik D. |
collection | PubMed |
description | Body composition is a key component of health in both individuals and populations, and excess adiposity is associated with an increased risk of developing chronic diseases. Body mass index (BMI) and other clinical or commercially available tools for quantifying body fat (BF) such as DXA, MRI, CT, and photonic scanners (3DPS) are often inaccurate, cost prohibitive, or cumbersome to use. The aim of the current study was to evaluate the performance of a novel automated computer vision method, visual body composition (VBC), that uses two-dimensional photographs captured via a conventional smartphone camera to estimate percentage total body fat (%BF). The VBC algorithm is based on a state-of-the-art convolutional neural network (CNN). The hypothesis is that VBC yields better accuracy than other consumer-grade fat measurements devices. 134 healthy adults ranging in age (21–76 years), sex (61.2% women), race (60.4% White; 23.9% Black), and body mass index (BMI, 18.5–51.6 kg/m(2)) were evaluated at two clinical sites (N = 64 at MGH, N = 70 at PBRC). Each participant had %BF measured with VBC, three consumer and two professional bioimpedance analysis (BIA) systems. The PBRC participants also had air displacement plethysmography (ADP) measured. %BF measured by dual-energy x-ray absorptiometry (DXA) was set as the reference against which all other %BF measurements were compared. To test our scientific hypothesis we run multiple, pair-wise Wilcoxon signed rank tests where we compare each competing measurement tool (VBC, BIA, …) with respect to the same ground-truth (DXA). Relative to DXA, VBC had the lowest mean absolute error and standard deviation (2.16 ± 1.54%) compared to all of the other evaluated methods (p < 0.05 for all comparisons). %BF measured by VBC also had good concordance with DXA (Lin’s concordance correlation coefficient, CCC: all 0.96; women 0.93; men 0.94), whereas BMI had very poor concordance (CCC: all 0.45; women 0.40; men 0.74). Bland-Altman analysis of VBC revealed the tightest limits of agreement (LOA) and absence of significant bias relative to DXA (bias −0.42%, R(2) = 0.03; p = 0.062; LOA −5.5% to +4.7%), whereas all other evaluated methods had significant (p < 0.01) bias and wider limits of agreement. Bias in Bland-Altman analyses is defined as the discordance between the y = 0 axis and the regressed line computed from the data in the plot. In this first validation study of a novel, accessible, and easy-to-use system, VBC body fat estimates were accurate and without significant bias compared to DXA as the reference; VBC performance exceeded those of all other BIA and ADP methods evaluated. The wide availability of smartphones suggests that the VBC method for evaluating %BF could play an important role in quantifying adiposity levels in a wide range of settings. Trial registration: ClinicalTrials.gov Identifier: NCT04854421. |
format | Online Article Text |
id | pubmed-9243018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-92430182022-07-01 Smartphone camera based assessment of adiposity: a validation study Majmudar, Maulik D. Chandra, Siddhartha Yakkala, Kiran Kennedy, Samantha Agrawal, Amit Sippel, Mark Ramu, Prakash Chaudhri, Apoorv Smith, Brooke Criminisi, Antonio Heymsfield, Steven B. Stanford, Fatima Cody NPJ Digit Med Article Body composition is a key component of health in both individuals and populations, and excess adiposity is associated with an increased risk of developing chronic diseases. Body mass index (BMI) and other clinical or commercially available tools for quantifying body fat (BF) such as DXA, MRI, CT, and photonic scanners (3DPS) are often inaccurate, cost prohibitive, or cumbersome to use. The aim of the current study was to evaluate the performance of a novel automated computer vision method, visual body composition (VBC), that uses two-dimensional photographs captured via a conventional smartphone camera to estimate percentage total body fat (%BF). The VBC algorithm is based on a state-of-the-art convolutional neural network (CNN). The hypothesis is that VBC yields better accuracy than other consumer-grade fat measurements devices. 134 healthy adults ranging in age (21–76 years), sex (61.2% women), race (60.4% White; 23.9% Black), and body mass index (BMI, 18.5–51.6 kg/m(2)) were evaluated at two clinical sites (N = 64 at MGH, N = 70 at PBRC). Each participant had %BF measured with VBC, three consumer and two professional bioimpedance analysis (BIA) systems. The PBRC participants also had air displacement plethysmography (ADP) measured. %BF measured by dual-energy x-ray absorptiometry (DXA) was set as the reference against which all other %BF measurements were compared. To test our scientific hypothesis we run multiple, pair-wise Wilcoxon signed rank tests where we compare each competing measurement tool (VBC, BIA, …) with respect to the same ground-truth (DXA). Relative to DXA, VBC had the lowest mean absolute error and standard deviation (2.16 ± 1.54%) compared to all of the other evaluated methods (p < 0.05 for all comparisons). %BF measured by VBC also had good concordance with DXA (Lin’s concordance correlation coefficient, CCC: all 0.96; women 0.93; men 0.94), whereas BMI had very poor concordance (CCC: all 0.45; women 0.40; men 0.74). Bland-Altman analysis of VBC revealed the tightest limits of agreement (LOA) and absence of significant bias relative to DXA (bias −0.42%, R(2) = 0.03; p = 0.062; LOA −5.5% to +4.7%), whereas all other evaluated methods had significant (p < 0.01) bias and wider limits of agreement. Bias in Bland-Altman analyses is defined as the discordance between the y = 0 axis and the regressed line computed from the data in the plot. In this first validation study of a novel, accessible, and easy-to-use system, VBC body fat estimates were accurate and without significant bias compared to DXA as the reference; VBC performance exceeded those of all other BIA and ADP methods evaluated. The wide availability of smartphones suggests that the VBC method for evaluating %BF could play an important role in quantifying adiposity levels in a wide range of settings. Trial registration: ClinicalTrials.gov Identifier: NCT04854421. Nature Publishing Group UK 2022-06-29 /pmc/articles/PMC9243018/ /pubmed/35768575 http://dx.doi.org/10.1038/s41746-022-00628-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Majmudar, Maulik D. Chandra, Siddhartha Yakkala, Kiran Kennedy, Samantha Agrawal, Amit Sippel, Mark Ramu, Prakash Chaudhri, Apoorv Smith, Brooke Criminisi, Antonio Heymsfield, Steven B. Stanford, Fatima Cody Smartphone camera based assessment of adiposity: a validation study |
title | Smartphone camera based assessment of adiposity: a validation study |
title_full | Smartphone camera based assessment of adiposity: a validation study |
title_fullStr | Smartphone camera based assessment of adiposity: a validation study |
title_full_unstemmed | Smartphone camera based assessment of adiposity: a validation study |
title_short | Smartphone camera based assessment of adiposity: a validation study |
title_sort | smartphone camera based assessment of adiposity: a validation study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243018/ https://www.ncbi.nlm.nih.gov/pubmed/35768575 http://dx.doi.org/10.1038/s41746-022-00628-3 |
work_keys_str_mv | AT majmudarmaulikd smartphonecamerabasedassessmentofadiposityavalidationstudy AT chandrasiddhartha smartphonecamerabasedassessmentofadiposityavalidationstudy AT yakkalakiran smartphonecamerabasedassessmentofadiposityavalidationstudy AT kennedysamantha smartphonecamerabasedassessmentofadiposityavalidationstudy AT agrawalamit smartphonecamerabasedassessmentofadiposityavalidationstudy AT sippelmark smartphonecamerabasedassessmentofadiposityavalidationstudy AT ramuprakash smartphonecamerabasedassessmentofadiposityavalidationstudy AT chaudhriapoorv smartphonecamerabasedassessmentofadiposityavalidationstudy AT smithbrooke smartphonecamerabasedassessmentofadiposityavalidationstudy AT criminisiantonio smartphonecamerabasedassessmentofadiposityavalidationstudy AT heymsfieldstevenb smartphonecamerabasedassessmentofadiposityavalidationstudy AT stanfordfatimacody smartphonecamerabasedassessmentofadiposityavalidationstudy |