Cargando…
Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images
Hashimoto’s thyroiditis (HT) is the main cause of hypothyroidism. We develop a deep learning model called HTNet for diagnosis of HT by training on 106,513 thyroid ultrasound images from 17,934 patients and test its performance on 5051 patients from 2 datasets of static images and 1 dataset of video...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243092/ https://www.ncbi.nlm.nih.gov/pubmed/35768466 http://dx.doi.org/10.1038/s41467-022-31449-3 |
_version_ | 1784738227706396672 |
---|---|
author | Zhang, Qiang Zhang, Sheng Pan, Yi Sun, Lin Li, Jianxin Qiao, Yu Zhao, Jing Wang, Xiaoqing Feng, Yixing Zhao, Yanhui Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Zhang, Linlei Wang, Yuxuan Duan, Yuansheng Shen, Hongru Li, Yang Yang, Meng Yang, Yichen Xin, Xiaojie Wei, Xi Zhou, Xuan Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun |
author_facet | Zhang, Qiang Zhang, Sheng Pan, Yi Sun, Lin Li, Jianxin Qiao, Yu Zhao, Jing Wang, Xiaoqing Feng, Yixing Zhao, Yanhui Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Zhang, Linlei Wang, Yuxuan Duan, Yuansheng Shen, Hongru Li, Yang Yang, Meng Yang, Yichen Xin, Xiaojie Wei, Xi Zhou, Xuan Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun |
author_sort | Zhang, Qiang |
collection | PubMed |
description | Hashimoto’s thyroiditis (HT) is the main cause of hypothyroidism. We develop a deep learning model called HTNet for diagnosis of HT by training on 106,513 thyroid ultrasound images from 17,934 patients and test its performance on 5051 patients from 2 datasets of static images and 1 dataset of video data. HTNet achieves an area under the receiver operating curve (AUC) of 0.905 (95% CI: 0.894 to 0.915), 0.888 (0.836–0.939) and 0.895 (0.862–0.927). HTNet exceeds radiologists’ performance on accuracy (83.2% versus 79.8%; binomial test, p < 0.001) and sensitivity (82.6% versus 68.1%; p < 0.001). By integrating serologic markers with imaging data, the performance of HTNet was significantly and marginally improved on the video (AUC, 0.949 versus 0.888; DeLong’s test, p = 0.004) and static-image (AUC, 0.914 versus 0.901; p = 0.08) testing sets, respectively. HTNet may be helpful as a tool for the management of HT. |
format | Online Article Text |
id | pubmed-9243092 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-92430922022-07-01 Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images Zhang, Qiang Zhang, Sheng Pan, Yi Sun, Lin Li, Jianxin Qiao, Yu Zhao, Jing Wang, Xiaoqing Feng, Yixing Zhao, Yanhui Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Zhang, Linlei Wang, Yuxuan Duan, Yuansheng Shen, Hongru Li, Yang Yang, Meng Yang, Yichen Xin, Xiaojie Wei, Xi Zhou, Xuan Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun Nat Commun Article Hashimoto’s thyroiditis (HT) is the main cause of hypothyroidism. We develop a deep learning model called HTNet for diagnosis of HT by training on 106,513 thyroid ultrasound images from 17,934 patients and test its performance on 5051 patients from 2 datasets of static images and 1 dataset of video data. HTNet achieves an area under the receiver operating curve (AUC) of 0.905 (95% CI: 0.894 to 0.915), 0.888 (0.836–0.939) and 0.895 (0.862–0.927). HTNet exceeds radiologists’ performance on accuracy (83.2% versus 79.8%; binomial test, p < 0.001) and sensitivity (82.6% versus 68.1%; p < 0.001). By integrating serologic markers with imaging data, the performance of HTNet was significantly and marginally improved on the video (AUC, 0.949 versus 0.888; DeLong’s test, p = 0.004) and static-image (AUC, 0.914 versus 0.901; p = 0.08) testing sets, respectively. HTNet may be helpful as a tool for the management of HT. Nature Publishing Group UK 2022-06-29 /pmc/articles/PMC9243092/ /pubmed/35768466 http://dx.doi.org/10.1038/s41467-022-31449-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhang, Qiang Zhang, Sheng Pan, Yi Sun, Lin Li, Jianxin Qiao, Yu Zhao, Jing Wang, Xiaoqing Feng, Yixing Zhao, Yanhui Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Zhang, Linlei Wang, Yuxuan Duan, Yuansheng Shen, Hongru Li, Yang Yang, Meng Yang, Yichen Xin, Xiaojie Wei, Xi Zhou, Xuan Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images |
title | Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images |
title_full | Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images |
title_fullStr | Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images |
title_full_unstemmed | Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images |
title_short | Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images |
title_sort | deep learning to diagnose hashimoto’s thyroiditis from sonographic images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243092/ https://www.ncbi.nlm.nih.gov/pubmed/35768466 http://dx.doi.org/10.1038/s41467-022-31449-3 |
work_keys_str_mv | AT zhangqiang deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhangsheng deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT panyi deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT sunlin deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT lijianxin deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT qiaoyu deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhaojing deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT wangxiaoqing deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT fengyixing deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhaoyanhui deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhengzhiming deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT yangxiangming deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT liulixia deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT qinchunxin deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhaoke deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT liuxiaonan deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT licaixia deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhangliuyang deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT yangchunrui deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhuona deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhanghong deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT liujie deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT gaojinglei deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT dixiaoling deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT mengfanbo deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhanglinlei deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT wangyuxuan deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT duanyuansheng deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT shenhongru deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT liyang deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT yangmeng deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT yangyichen deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT xinxiaojie deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT weixi deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhouxuan deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT jinrui deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhanglun deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT wangxudong deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT songfengju deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT zhengxiangqian deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT gaoming deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT chenkexin deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages AT lixiangchun deeplearningtodiagnosehashimotosthyroiditisfromsonographicimages |