Cargando…
BIGDML—Towards accurate quantum machine learning force fields for materials
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive...
Autores principales: | Sauceda, Huziel E., Gálvez-González, Luis E., Chmiela, Stefan, Paz-Borbón, Lauro Oliver, Müller, Klaus-Robert, Tkatchenko, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243122/ https://www.ncbi.nlm.nih.gov/pubmed/35768400 http://dx.doi.org/10.1038/s41467-022-31093-x |
Ejemplares similares
-
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Accurate global machine learning force fields for molecules with hundreds of atoms
por: Chmiela, Stefan, et al.
Publicado: (2023) -
Towards exact molecular dynamics simulations with machine-learned force fields
por: Chmiela, Stefan, et al.
Publicado: (2018) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature
por: Sauceda, Huziel E., et al.
Publicado: (2021)