Cargando…
Robust model selection using the out-of-bag bootstrap in linear regression
Outlying observations have a large influence on the linear model selection process. In this article, we present a novel approach to robust model selection in linear regression to accommodate the situations where outliers are present in the data. The model selection criterion is based on two componen...
Autores principales: | Rabbi, Fazli, Khalil, Alamgir, Khan, Ilyas, Almuqrin, Muqrin A., Khalil, Umair, Andualem, Mulugeta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243146/ https://www.ncbi.nlm.nih.gov/pubmed/35768449 http://dx.doi.org/10.1038/s41598-022-14398-1 |
Ejemplares similares
-
Sample size issues in multilevel logistic regression models
por: Ali, Amjad, et al.
Publicado: (2019) -
SARS-CoV-2 infection with lytic and non-lytic immune responses: A fractional order optimal control theoretical study
por: Chatterjee, Amar Nath, et al.
Publicado: (2021) -
Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data
por: Abram, Samantha V., et al.
Publicado: (2016) -
Cut-touching linear functionals in the conformal bootstrap
por: Qiao, Jiaxin, et al.
Publicado: (2017) -
ClusterBootstrap: An R package for the analysis of hierarchical data using generalized linear models with the cluster bootstrap
por: Deen, Mathijs, et al.
Publicado: (2019)