Cargando…
EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach
Electroencephalogram (EEG) authentication has become a research hotspot in the field of information security due to its advantages of living, internal, and anti-stress. However, the performance of identity authentication system is limited by the inherent attributes of EEG, such as low SNR, low stabi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243312/ https://www.ncbi.nlm.nih.gov/pubmed/35783367 http://dx.doi.org/10.3389/fnbot.2022.901765 |
_version_ | 1784738276489297920 |
---|---|
author | Zhang, Rongkai Zeng, Ying Tong, Li Shu, Jun Lu, Runnan Li, Zhongrui Yang, Kai Yan, Bin |
author_facet | Zhang, Rongkai Zeng, Ying Tong, Li Shu, Jun Lu, Runnan Li, Zhongrui Yang, Kai Yan, Bin |
author_sort | Zhang, Rongkai |
collection | PubMed |
description | Electroencephalogram (EEG) authentication has become a research hotspot in the field of information security due to its advantages of living, internal, and anti-stress. However, the performance of identity authentication system is limited by the inherent attributes of EEG, such as low SNR, low stability, and strong randomness. Researchers generally believe that the in-depth fusion of features can improve the performance of identity authentication and have explored among various feature domains. This experiment invited 70 subjects to participate in the EEG identity authentication task, and the experimental materials were visual stimuli of the self and non-self-names. This paper proposes an innovative EEG authentication framework, including efficient three-dimensional representation of EEG signals, multi-scale convolution structure, and the combination of multiple authentication strategies. In this work, individual EEG signals are converted into spatial–temporal–frequency domain three-dimensional forms to provide multi-angle mixed feature representation. Then, the individual identity features are extracted by the various convolution kernel of multi-scale vision, and the strategy of combining multiple convolution kernels is explored. The results show that the small-size and long-shape convolution kernel is suitable for ERP tasks, which can obtain better convergence and accuracy. The experimental results show that the classification performance of the proposed framework is excellent, and the multi-scale convolution method is effective to extract high-quality identity characteristics across feature domains. The results show that the branch number matches the EEG component number can obtain the excellent cost performance. In addition, this paper explores the network training performance for multi-scale module combination strategy and provides reference for deep network construction strategy of EEG signal processing. |
format | Online Article Text |
id | pubmed-9243312 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92433122022-07-01 EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach Zhang, Rongkai Zeng, Ying Tong, Li Shu, Jun Lu, Runnan Li, Zhongrui Yang, Kai Yan, Bin Front Neurorobot Neuroscience Electroencephalogram (EEG) authentication has become a research hotspot in the field of information security due to its advantages of living, internal, and anti-stress. However, the performance of identity authentication system is limited by the inherent attributes of EEG, such as low SNR, low stability, and strong randomness. Researchers generally believe that the in-depth fusion of features can improve the performance of identity authentication and have explored among various feature domains. This experiment invited 70 subjects to participate in the EEG identity authentication task, and the experimental materials were visual stimuli of the self and non-self-names. This paper proposes an innovative EEG authentication framework, including efficient three-dimensional representation of EEG signals, multi-scale convolution structure, and the combination of multiple authentication strategies. In this work, individual EEG signals are converted into spatial–temporal–frequency domain three-dimensional forms to provide multi-angle mixed feature representation. Then, the individual identity features are extracted by the various convolution kernel of multi-scale vision, and the strategy of combining multiple convolution kernels is explored. The results show that the small-size and long-shape convolution kernel is suitable for ERP tasks, which can obtain better convergence and accuracy. The experimental results show that the classification performance of the proposed framework is excellent, and the multi-scale convolution method is effective to extract high-quality identity characteristics across feature domains. The results show that the branch number matches the EEG component number can obtain the excellent cost performance. In addition, this paper explores the network training performance for multi-scale module combination strategy and provides reference for deep network construction strategy of EEG signal processing. Frontiers Media S.A. 2022-06-16 /pmc/articles/PMC9243312/ /pubmed/35783367 http://dx.doi.org/10.3389/fnbot.2022.901765 Text en Copyright © 2022 Zhang, Zeng, Tong, Shu, Lu, Li, Yang and Yan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Zhang, Rongkai Zeng, Ying Tong, Li Shu, Jun Lu, Runnan Li, Zhongrui Yang, Kai Yan, Bin EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach |
title | EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach |
title_full | EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach |
title_fullStr | EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach |
title_full_unstemmed | EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach |
title_short | EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach |
title_sort | eeg identity authentication in multi-domain features: a multi-scale 3d-cnn approach |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243312/ https://www.ncbi.nlm.nih.gov/pubmed/35783367 http://dx.doi.org/10.3389/fnbot.2022.901765 |
work_keys_str_mv | AT zhangrongkai eegidentityauthenticationinmultidomainfeaturesamultiscale3dcnnapproach AT zengying eegidentityauthenticationinmultidomainfeaturesamultiscale3dcnnapproach AT tongli eegidentityauthenticationinmultidomainfeaturesamultiscale3dcnnapproach AT shujun eegidentityauthenticationinmultidomainfeaturesamultiscale3dcnnapproach AT lurunnan eegidentityauthenticationinmultidomainfeaturesamultiscale3dcnnapproach AT lizhongrui eegidentityauthenticationinmultidomainfeaturesamultiscale3dcnnapproach AT yangkai eegidentityauthenticationinmultidomainfeaturesamultiscale3dcnnapproach AT yanbin eegidentityauthenticationinmultidomainfeaturesamultiscale3dcnnapproach |