Cargando…
Toward Reflective Spiking Neural Networks Exploiting Memristive Devices
The design of modern convolutional artificial neural networks (ANNs) composed of formal neurons copies the architecture of the visual cortex. Signals proceed through a hierarchy, where receptive fields become increasingly more complex and coding sparse. Nowadays, ANNs outperform humans in controlled...
Autores principales: | Makarov, Valeri A., Lobov, Sergey A., Shchanikov, Sergey, Mikhaylov, Alexey, Kazantsev, Viktor B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243340/ https://www.ncbi.nlm.nih.gov/pubmed/35782090 http://dx.doi.org/10.3389/fncom.2022.859874 |
Ejemplares similares
-
Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot
por: Lobov, Sergey A., et al.
Publicado: (2020) -
Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics
por: Mikhaylov, Alexey, et al.
Publicado: (2020) -
Editorial: Neuroelectronics: towards symbiosis of neuronal systems and emerging electronics
por: Mikhaylov, Alexey N., et al.
Publicado: (2023) -
Spatial Memory in a Spiking Neural Network with Robot Embodiment
por: Lobov, Sergey A., et al.
Publicado: (2021) -
Plasticity in memristive devices for spiking neural networks
por: Saïghi, Sylvain, et al.
Publicado: (2015)