Cargando…
Clinical study applying machine learning to detect a rare disease: results and lessons learned
Machine learning has the potential to improve identification of patients for appropriate diagnostic testing and treatment, including those who have rare diseases for which effective treatments are available, such as acute hepatic porphyria (AHP). We trained a machine learning model on 205 571 comple...
Autores principales: | Hersh, William R, Cohen, Aaron M, Nguyen, Michelle M, Bensching, Katherine L, Deloughery, Thomas G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243401/ https://www.ncbi.nlm.nih.gov/pubmed/35783073 http://dx.doi.org/10.1093/jamiaopen/ooac053 |
Ejemplares similares
-
Detecting rare diseases in electronic health records using machine learning and knowledge engineering: Case study of acute hepatic porphyria
por: Cohen, Aaron M., et al.
Publicado: (2020) -
Correction: Detecting rare diseases in electronic health records using machine learning and knowledge engineering: Case study of acute hepatic porphyria
por: Cohen, Aaron M., et al.
Publicado: (2020) -
The National Institutes of Health funding for clinical research applying machine learning techniques in 2017
por: Annapureddy, Amarnath R., et al.
Publicado: (2020) -
Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach
por: Wallace, Byron C, et al.
Publicado: (2017) -
Data discovery with DATS: exemplar adoptions and lessons learned
por: Gonzalez-Beltran, Alejandra N, et al.
Publicado: (2017)