Cargando…
A P300-Detection Method Based on Logistic Regression and a Convolutional Neural Network
BACKGROUND: Electroencephalogram (EEG)-based brain-computer interface (BCI) systems are widely utilized in various fields, including health care, intelligent assistance, identity recognition, emotion recognition, and fatigue detection. P300, the main event-related potential, is the primary component...
Autores principales: | Li, Qi, Wu, Yan, Song, Yu, Zhao, Di, Sun, Meiqi, Zhang, Zhilin, Wu, Jinglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243506/ https://www.ncbi.nlm.nih.gov/pubmed/35782086 http://dx.doi.org/10.3389/fncom.2022.909553 |
Ejemplares similares
-
Decoding P300 Variability Using Convolutional Neural Networks
por: Solon, Amelia J., et al.
Publicado: (2019) -
A separable convolutional neural network-based fast recognition method for AR-P300
por: He, Chunzhao, et al.
Publicado: (2022) -
Novel Convolutional Neural Network with Variational Information Bottleneck for P300 Detection
por: Liao, Hongpeng, et al.
Publicado: (2020) -
A Lightweight Multi-Scale Convolutional Neural Network for P300 Decoding: Analysis of Training Strategies and Uncovering of Network Decision
por: Borra, Davide, et al.
Publicado: (2021) -
Advanced applied deep learning: convolutional neural networks and object detection
por: Michelucci, Umberto
Publicado: (2019)