Cargando…

A survey on the interpretability of deep learning in medical diagnosis

Deep learning has demonstrated remarkable performance in the medical domain, with accuracy that rivals or even exceeds that of human experts. However, it has a significant problem that these models are “black-box” structures, which means they are opaque, non-intuitive, and difficult for people to un...

Descripción completa

Detalles Bibliográficos
Autores principales: Teng, Qiaoying, Liu, Zhe, Song, Yuqing, Han, Kai, Lu, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243744/
https://www.ncbi.nlm.nih.gov/pubmed/35789785
http://dx.doi.org/10.1007/s00530-022-00960-4
Descripción
Sumario:Deep learning has demonstrated remarkable performance in the medical domain, with accuracy that rivals or even exceeds that of human experts. However, it has a significant problem that these models are “black-box” structures, which means they are opaque, non-intuitive, and difficult for people to understand. This creates a barrier to the application of deep learning models in clinical practice due to lack of interpretability, trust, and transparency. To overcome this problem, several studies on interpretability have been proposed. Therefore, in this paper, we comprehensively review the interpretability of deep learning in medical diagnosis based on the current literature, including some common interpretability methods used in the medical domain, various applications with interpretability for disease diagnosis, prevalent evaluation metrics, and several disease datasets. In addition, the challenges of interpretability and future research directions are also discussed here. To the best of our knowledge, this is the first time that various applications of interpretability methods for disease diagnosis have been summarized.