Cargando…
Prospective Evaluation of a Machine-Learning Prediction Model for Missed Radiology Appointments
The term “no-show” refers to scheduled appointments that a patient misses, or for which she arrives too late to utilize medical resources. Accurately predicting no-shows creates opportunities to intervene, ensuring that patients receive needed medical resources. A machine-learning (ML) model can acc...
Autores principales: | Rothenberg, Steven, Bame, Bill, Herskovitz, Ed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243788/ https://www.ncbi.nlm.nih.gov/pubmed/35768754 http://dx.doi.org/10.1007/s10278-022-00670-3 |
Ejemplares similares
-
Efficient Prediction of Missed Clinical Appointment Using Machine Learning
por: Qureshi, Zeeshan, et al.
Publicado: (2021) -
Retracted: Efficient Prediction of Missed Clinical Appointment Using Machine Learning
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Machine learning approaches to predicting no-shows in pediatric medical appointment
por: Liu, Dianbo, et al.
Publicado: (2022) -
Exploring Factors Associated With Missed Dental Appointments: A Machine Learning Analysis of Electronic Dental Records
por: Alqahtani, Hussam M, et al.
Publicado: (2023) -
The changing face of missed appointments
por: Parsons, Jo, et al.
Publicado: (2023)