Cargando…
An Improved K-means Clustering Algorithm Towards an Efficient Data-Driven Modeling
K-means algorithm is one of the well-known unsupervised machine learning algorithms. The algorithm typically finds out distinct non-overlapping clusters in which each point is assigned to a group. The minimum squared distance technique distributes each point to the nearest clusters or subgroups. One...
Autores principales: | Zubair, Md., Iqbal, MD. Asif, Shil, Avijeet, Chowdhury, M. J. M., Moni, Mohammad Ali, Sarker, Iqbal H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243813/ http://dx.doi.org/10.1007/s40745-022-00428-2 |
Ejemplares similares
-
Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms
por: Fong, Simon, et al.
Publicado: (2014) -
Finding reproducible cluster partitions for the k-means algorithm
por: Lisboa, Paulo JG, et al.
Publicado: (2013) -
Clustering Using Boosted Constrained k-Means Algorithm
por: Okabe, Masayuki, et al.
Publicado: (2018) -
A practical comparison of two K-Means clustering algorithms
por: Wilkin, Gregory A, et al.
Publicado: (2008) -
Bioactive Components and Radical Scavenging Activity in Selected Advance Lines of Salt-Tolerant Vegetable Amaranth
por: Sarker, Umakanta, et al.
Publicado: (2020)