Cargando…
Fake news spreader detection using trust-based strategies in social networks with bot filtration
An important aspect of preventing fake news spreading in social networks is to proactively detect the users that are likely going to spread such news. Research in the domain of spreader detection is at a nascent stage compared to fake news detection. In this paper, we propose a graph neural network-...
Autores principales: | Rath, Bhavtosh, Salecha, Aadesh, Srivastava, Jaideep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244065/ https://www.ncbi.nlm.nih.gov/pubmed/35789888 http://dx.doi.org/10.1007/s13278-022-00890-z |
Ejemplares similares
-
Online information disorder: fake news, bots and trolls
por: Giachanou, Anastasia, et al.
Publicado: (2022) -
The Role of Personality and Linguistic Patterns in Discriminating Between Fake News Spreaders and Fact Checkers
por: Giachanou, Anastasia, et al.
Publicado: (2020) -
MANIFESTO: a huMAN-centric explaInable approach for FakE news spreaders deTectiOn
por: Lampridis, Orestis, et al.
Publicado: (2022) -
AI bot to detect fake COVID‐19 vaccine certificate
por: Arif, Muhammad, et al.
Publicado: (2022) -
EchoFakeD: improving fake news detection in social media with an efficient deep neural network
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021)