Cargando…

Automatic Artifact Detection Algorithm in Fetal MRI

Fetal MR imaging is subject to artifacts including motion, chemical shift, and radiofrequency artifacts. Currently, such artifacts are detected by the MRI operator, a process which is subjective, time consuming, and prone to errors. We propose a novel algorithm, RISE-Net, that can consistently, auto...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Adam, Lo, Justin, Wagner, Matthias W., Ertl-Wagner, Birgit, Sussman, Dafna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244144/
https://www.ncbi.nlm.nih.gov/pubmed/35783351
http://dx.doi.org/10.3389/frai.2022.861791
Descripción
Sumario:Fetal MR imaging is subject to artifacts including motion, chemical shift, and radiofrequency artifacts. Currently, such artifacts are detected by the MRI operator, a process which is subjective, time consuming, and prone to errors. We propose a novel algorithm, RISE-Net, that can consistently, automatically, and objectively detect artifacts in 3D fetal MRI. It makes use of a CNN ensemble approach where the first CNN aims to identify and classify any artifacts in the image, and the second CNN uses regression to determine the severity of the detected artifacts. The main mechanism in RISE-Net is the stacked Residual, Inception, Squeeze and Excitation (RISE) blocks. This classification network achieved an accuracy of 90.34% and a F1 score of 90.39% and outperformed other state-of-the-art architectures, such as VGG-16, Inception, ResNet-50, ReNet-Inception, SE-ResNet, and SE-Inception. The severity regression network had an MSE of 0.083 across all classes. The presented algorithm facilitates rapid and accurate fetal MRI quality assurance that can be implemented into clinical use.