Cargando…
Machine Learning Models for Inpatient Glucose Prediction
PURPOSE OF REVIEW: Glucose management in the hospital is difficult due to non-static factors such as antihyperglycemic and steroid doses, renal function, infection, surgical status, and diet. Given these complex and dynamic factors, machine learning approaches can be leveraged for prediction of gluc...
Autores principales: | Zale, Andrew, Mathioudakis, Nestoras |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244155/ https://www.ncbi.nlm.nih.gov/pubmed/35759171 http://dx.doi.org/10.1007/s11892-022-01477-w |
Ejemplares similares
-
Safety and Efficacy of Inpatient Diabetes Management with Non-insulin Agents: an Overview of International Practices
por: Galindo, Rodolfo J., et al.
Publicado: (2022) -
Management of Hyperglycemia and Diabetes in Orthopedic Surgery
por: Akiboye, Funke, et al.
Publicado: (2017) -
Treatment of Diabetic Ketoacidosis (DKA)/Hyperglycemic Hyperosmolar State (HHS): Novel Advances in the Management of Hyperglycemic Crises (UK Versus USA)
por: Dhatariya, Ketan K., et al.
Publicado: (2017) -
Potential Clinical Applications for Continuous Ketone Monitoring in the Hospitalized Patient with Diabetes
por: Jaromy, Michelle, et al.
Publicado: (2022) -
CGM in the Hospital: Is It Ready for Prime Time?
por: Buschur, Elizabeth O., et al.
Publicado: (2022)