Cargando…
Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe
BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environm...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244224/ https://www.ncbi.nlm.nih.gov/pubmed/35466367 http://dx.doi.org/10.1093/jac/dkac133 |
_version_ | 1784738478904311808 |
---|---|
author | Yang, Dongsheng Heederik, Dick J J Scherpenisse, Peter Van Gompel, Liese Luiken, Roosmarijn E C Wadepohl, Katharina Skarżyńska, Magdalena Van Heijnsbergen, Eri Wouters, Inge M Greve, Gerdit D Jongerius-Gortemaker, Betty G M Tersteeg-Zijderveld, Monique Portengen, Lützen Juraschek, Katharina Fischer, Jennie Zając, Magdalena Wasyl, Dariusz Wagenaar, Jaap A Mevius, Dik J Smit, Lidwien A M Schmitt, Heike |
author_facet | Yang, Dongsheng Heederik, Dick J J Scherpenisse, Peter Van Gompel, Liese Luiken, Roosmarijn E C Wadepohl, Katharina Skarżyńska, Magdalena Van Heijnsbergen, Eri Wouters, Inge M Greve, Gerdit D Jongerius-Gortemaker, Betty G M Tersteeg-Zijderveld, Monique Portengen, Lützen Juraschek, Katharina Fischer, Jennie Zając, Magdalena Wasyl, Dariusz Wagenaar, Jaap A Mevius, Dik J Smit, Lidwien A M Schmitt, Heike |
author_sort | Yang, Dongsheng |
collection | PubMed |
description | BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. METHODS: A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3′)-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman’s rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. RESULTS: ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains (‘farm to fork’) was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman’s ρ > 0.7) between qPCR data and metagenomic data of pooled samples. CONCLUSIONS: qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure. |
format | Online Article Text |
id | pubmed-9244224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92442242022-07-01 Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe Yang, Dongsheng Heederik, Dick J J Scherpenisse, Peter Van Gompel, Liese Luiken, Roosmarijn E C Wadepohl, Katharina Skarżyńska, Magdalena Van Heijnsbergen, Eri Wouters, Inge M Greve, Gerdit D Jongerius-Gortemaker, Betty G M Tersteeg-Zijderveld, Monique Portengen, Lützen Juraschek, Katharina Fischer, Jennie Zając, Magdalena Wasyl, Dariusz Wagenaar, Jaap A Mevius, Dik J Smit, Lidwien A M Schmitt, Heike J Antimicrob Chemother Original Research BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. METHODS: A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3′)-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman’s rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. RESULTS: ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains (‘farm to fork’) was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman’s ρ > 0.7) between qPCR data and metagenomic data of pooled samples. CONCLUSIONS: qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure. Oxford University Press 2022-04-25 /pmc/articles/PMC9244224/ /pubmed/35466367 http://dx.doi.org/10.1093/jac/dkac133 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Research Yang, Dongsheng Heederik, Dick J J Scherpenisse, Peter Van Gompel, Liese Luiken, Roosmarijn E C Wadepohl, Katharina Skarżyńska, Magdalena Van Heijnsbergen, Eri Wouters, Inge M Greve, Gerdit D Jongerius-Gortemaker, Betty G M Tersteeg-Zijderveld, Monique Portengen, Lützen Juraschek, Katharina Fischer, Jennie Zając, Magdalena Wasyl, Dariusz Wagenaar, Jaap A Mevius, Dik J Smit, Lidwien A M Schmitt, Heike Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe |
title | Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe |
title_full | Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe |
title_fullStr | Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe |
title_full_unstemmed | Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe |
title_short | Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe |
title_sort | antimicrobial resistance genes aph(3′)-iii, erm(b), sul2 and tet(w) abundance in animal faeces, meat, production environments and human faeces in europe |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244224/ https://www.ncbi.nlm.nih.gov/pubmed/35466367 http://dx.doi.org/10.1093/jac/dkac133 |
work_keys_str_mv | AT yangdongsheng antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT heederikdickjj antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT scherpenissepeter antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT vangompelliese antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT luikenroosmarijnec antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT wadepohlkatharina antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT skarzynskamagdalena antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT vanheijnsbergeneri antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT woutersingem antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT grevegerditd antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT jongeriusgortemakerbettygm antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT tersteegzijderveldmonique antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT portengenlutzen antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT juraschekkatharina antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT fischerjennie antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT zajacmagdalena antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT wasyldariusz antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT wagenaarjaapa antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT meviusdikj antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT smitlidwienam antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope AT schmittheike antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope |