Cargando…

Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe

BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environm...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Dongsheng, Heederik, Dick J J, Scherpenisse, Peter, Van Gompel, Liese, Luiken, Roosmarijn E C, Wadepohl, Katharina, Skarżyńska, Magdalena, Van Heijnsbergen, Eri, Wouters, Inge M, Greve, Gerdit D, Jongerius-Gortemaker, Betty G M, Tersteeg-Zijderveld, Monique, Portengen, Lützen, Juraschek, Katharina, Fischer, Jennie, Zając, Magdalena, Wasyl, Dariusz, Wagenaar, Jaap A, Mevius, Dik J, Smit, Lidwien A M, Schmitt, Heike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244224/
https://www.ncbi.nlm.nih.gov/pubmed/35466367
http://dx.doi.org/10.1093/jac/dkac133
_version_ 1784738478904311808
author Yang, Dongsheng
Heederik, Dick J J
Scherpenisse, Peter
Van Gompel, Liese
Luiken, Roosmarijn E C
Wadepohl, Katharina
Skarżyńska, Magdalena
Van Heijnsbergen, Eri
Wouters, Inge M
Greve, Gerdit D
Jongerius-Gortemaker, Betty G M
Tersteeg-Zijderveld, Monique
Portengen, Lützen
Juraschek, Katharina
Fischer, Jennie
Zając, Magdalena
Wasyl, Dariusz
Wagenaar, Jaap A
Mevius, Dik J
Smit, Lidwien A M
Schmitt, Heike
author_facet Yang, Dongsheng
Heederik, Dick J J
Scherpenisse, Peter
Van Gompel, Liese
Luiken, Roosmarijn E C
Wadepohl, Katharina
Skarżyńska, Magdalena
Van Heijnsbergen, Eri
Wouters, Inge M
Greve, Gerdit D
Jongerius-Gortemaker, Betty G M
Tersteeg-Zijderveld, Monique
Portengen, Lützen
Juraschek, Katharina
Fischer, Jennie
Zając, Magdalena
Wasyl, Dariusz
Wagenaar, Jaap A
Mevius, Dik J
Smit, Lidwien A M
Schmitt, Heike
author_sort Yang, Dongsheng
collection PubMed
description BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. METHODS: A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3′)-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman’s rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. RESULTS: ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains (‘farm to fork’) was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman’s ρ > 0.7) between qPCR data and metagenomic data of pooled samples. CONCLUSIONS: qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure.
format Online
Article
Text
id pubmed-9244224
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-92442242022-07-01 Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe Yang, Dongsheng Heederik, Dick J J Scherpenisse, Peter Van Gompel, Liese Luiken, Roosmarijn E C Wadepohl, Katharina Skarżyńska, Magdalena Van Heijnsbergen, Eri Wouters, Inge M Greve, Gerdit D Jongerius-Gortemaker, Betty G M Tersteeg-Zijderveld, Monique Portengen, Lützen Juraschek, Katharina Fischer, Jennie Zając, Magdalena Wasyl, Dariusz Wagenaar, Jaap A Mevius, Dik J Smit, Lidwien A M Schmitt, Heike J Antimicrob Chemother Original Research BACKGROUND: Real-time quantitative PCR (qPCR) is an affordable method to quantify antimicrobial resistance gene (ARG) targets, allowing comparisons of ARG abundance along animal production chains. OBJECTIVES: We present a comparison of ARG abundance across various animal species, production environments and humans in Europe. AMR variation sources were quantified. The correlation of ARG abundance between qPCR data and previously published metagenomic data was assessed. METHODS: A cross-sectional study was conducted in nine European countries, comprising 9572 samples. qPCR was used to quantify abundance of ARGs [aph(3′)-III, erm(B), sul2, tet(W)] and 16S rRNA. Variance component analysis was conducted to explore AMR variation sources. Spearman’s rank correlation of ARG abundance values was evaluated between pooled qPCR data and earlier published pooled metagenomic data. RESULTS: ARG abundance varied strongly among animal species, environments and humans. This variation was dominated by between-farm variation (pigs) or within-farm variation (broilers, veal calves and turkeys). A decrease in ARG abundance along pig and broiler production chains (‘farm to fork’) was observed. ARG abundance was higher in farmers than in slaughterhouse workers, and lowest in control subjects. ARG abundance showed a high correlation (Spearman’s ρ > 0.7) between qPCR data and metagenomic data of pooled samples. CONCLUSIONS: qPCR analysis is a valuable tool to assess ARG abundance in a large collection of livestock-associated samples. The between-country and between-farm variation of ARG abundance could partially be explained by antimicrobial use and farm biosecurity levels. ARG abundance in human faeces was related to livestock antimicrobial resistance exposure. Oxford University Press 2022-04-25 /pmc/articles/PMC9244224/ /pubmed/35466367 http://dx.doi.org/10.1093/jac/dkac133 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Original Research
Yang, Dongsheng
Heederik, Dick J J
Scherpenisse, Peter
Van Gompel, Liese
Luiken, Roosmarijn E C
Wadepohl, Katharina
Skarżyńska, Magdalena
Van Heijnsbergen, Eri
Wouters, Inge M
Greve, Gerdit D
Jongerius-Gortemaker, Betty G M
Tersteeg-Zijderveld, Monique
Portengen, Lützen
Juraschek, Katharina
Fischer, Jennie
Zając, Magdalena
Wasyl, Dariusz
Wagenaar, Jaap A
Mevius, Dik J
Smit, Lidwien A M
Schmitt, Heike
Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe
title Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe
title_full Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe
title_fullStr Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe
title_full_unstemmed Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe
title_short Antimicrobial resistance genes aph(3′)-III, erm(B), sul2 and tet(W) abundance in animal faeces, meat, production environments and human faeces in Europe
title_sort antimicrobial resistance genes aph(3′)-iii, erm(b), sul2 and tet(w) abundance in animal faeces, meat, production environments and human faeces in europe
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244224/
https://www.ncbi.nlm.nih.gov/pubmed/35466367
http://dx.doi.org/10.1093/jac/dkac133
work_keys_str_mv AT yangdongsheng antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT heederikdickjj antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT scherpenissepeter antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT vangompelliese antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT luikenroosmarijnec antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT wadepohlkatharina antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT skarzynskamagdalena antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT vanheijnsbergeneri antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT woutersingem antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT grevegerditd antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT jongeriusgortemakerbettygm antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT tersteegzijderveldmonique antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT portengenlutzen antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT juraschekkatharina antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT fischerjennie antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT zajacmagdalena antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT wasyldariusz antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT wagenaarjaapa antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT meviusdikj antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT smitlidwienam antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope
AT schmittheike antimicrobialresistancegenesaph3iiiermbsul2andtetwabundanceinanimalfaecesmeatproductionenvironmentsandhumanfaecesineurope