Cargando…
Machine Learning Approaches for Measuring Neighborhood Environments in Epidemiologic Studies
PURPOSE OF REVIEW: Innovations in information technology, initiatives by local governments to share administrative data, and growing inventories of data available from commercial data aggregators have immensely expanded the information available to describe neighborhood environments, supporting an a...
Autores principales: | Rundle, Andrew G., Bader, Michael D. M., Mooney, Stephen J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244309/ https://www.ncbi.nlm.nih.gov/pubmed/35789918 http://dx.doi.org/10.1007/s40471-022-00296-7 |
Ejemplares similares
-
Analytic Complexity and Challenges in Identifying Mixtures of Exposures Associated with Phenotypes in the Exposome Era
por: Patel, Chirag J.
Publicado: (2017) -
The Disclosure of Personally Identifiable Information in Studies of Neighborhood Contexts and Patient Outcomes
por: Rundle, Andrew Graham, et al.
Publicado: (2022) -
Modeling Desert Dust Exposures in Epidemiologic Short-term Health Effects Studies
por: Tobías, Aurelio, et al.
Publicado: (2020) -
The COVID-19 Pandemic—an Epidemiological Perspective
por: Vilella, Anna, et al.
Publicado: (2021) -
Tracing the Origin of Food-borne Disease Outbreaks: A Network Model Approach
por: Jacobs, Rianne, et al.
Publicado: (2020)