Cargando…

Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development

BACKGROUND: It is known that p53 suppression is an important marker of poor prognosis of cancers, especially in solid tumors of the breast, lung, stomach, and esophagus; liposarcomas, glioblastomas, and leukemias. Because p53 has mouse double minute 2 (MDM2) as its primary negative regulator, this m...

Descripción completa

Detalles Bibliográficos
Autores principales: da Mota, Vítor Hugo Sales, Freire de Melo, Fabrício, de Brito, Breno Bittencourt, da Silva, Filipe Antônio França, Teixeira, Kádima Nayara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244969/
https://www.ncbi.nlm.nih.gov/pubmed/35949428
http://dx.doi.org/10.5306/wjco.v13.i6.496
_version_ 1784738645976023040
author da Mota, Vítor Hugo Sales
Freire de Melo, Fabrício
de Brito, Breno Bittencourt
da Silva, Filipe Antônio França
Teixeira, Kádima Nayara
author_facet da Mota, Vítor Hugo Sales
Freire de Melo, Fabrício
de Brito, Breno Bittencourt
da Silva, Filipe Antônio França
Teixeira, Kádima Nayara
author_sort da Mota, Vítor Hugo Sales
collection PubMed
description BACKGROUND: It is known that p53 suppression is an important marker of poor prognosis of cancers, especially in solid tumors of the breast, lung, stomach, and esophagus; liposarcomas, glioblastomas, and leukemias. Because p53 has mouse double minute 2 (MDM2) as its primary negative regulator, this molecular docking study seeks to answer the following hypotheses: Is the interaction between DS-3032B and MDM2 stable enough for this drug to be considered as a promising neoplastic inhibitor? AIM: To analyze, in silico, the chemical bonds between the antagonist DS-3032B and its binding site in MDM2. METHODS: For molecular docking simulations, the file containing structures of MDM2 (receptor) and the drug DS-3032B (ligand) were selected. The three-dimensional structure of MDM2 was obtained from Protein Data Bank, and the one for DS-3032B was obtained from PubChem database. The location and dimensions of the Grid box was determined using AutoDock Tools software. In this case, the dimensions of the Grid encompassed the entire receptor. The ligand DS-3032B interacts with the MDM2 receptor in a physiological environment with pH 7.4; thus, to simulate more reliably, its interaction was made with the calculation for the prediction of its protonation state using the MarvinSketch(®) software. Both ligands, with and without the protonation, were prepared for molecular docking using the AutoDock Tools software. This software detects the torsion points of the drug and calculates the angle of the torsions. Molecular docking simulations were performed using the tools of the AutoDock platform connected to the Vina software. The analyses of the amino acid residues involved in the interactions between the receptor and the ligand as well as the twists of the ligand, atoms involved in the interactions, and type, strength, and length of the interactions were performed using the PyMol software (pymol.org/2) and Discovery Studio from BIOVIA(®). RESULTS: The global alignment indicated crystal structure 5SWK was more suitable for docking simulations by presenting the p53 binding site. The three-dimensional structure 5SWK for MDM2 was selected from Protein Data Bank and the three-dimensional structure of DS-3032B was selected from PubChem (Compound CID: 73297272; Milademetan). After molecular docking simulations, the most stable conformer was selected for both protonated and non-protonated DS-3032B. The interaction between MDM2 and DS-3032B occurs with high affinity; no significant difference was observed in the affinity energies between the MDM2/pronated DS-3032B (-9.9 kcal/mol) and MDM2/non-protonated DS-3032B conformers (-10.0 kcal/mol). Sixteen amino acid residues of MDM2 are involved in chemical bonds with the protonated DS-3032B; these 16 residues of MDM2 belong to the p53 biding site region and provide high affinity to interaction and stability to drug-protein complex. CONCLUSION: Molecular docking indicated that DS-3032B antagonist binds to the same region of the p53 binding site in the MDM2 with high affinity and stability, and this suggests therapeutic efficiency.
format Online
Article
Text
id pubmed-9244969
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Baishideng Publishing Group Inc
record_format MEDLINE/PubMed
spelling pubmed-92449692022-08-09 Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development da Mota, Vítor Hugo Sales Freire de Melo, Fabrício de Brito, Breno Bittencourt da Silva, Filipe Antônio França Teixeira, Kádima Nayara World J Clin Oncol Basic Study BACKGROUND: It is known that p53 suppression is an important marker of poor prognosis of cancers, especially in solid tumors of the breast, lung, stomach, and esophagus; liposarcomas, glioblastomas, and leukemias. Because p53 has mouse double minute 2 (MDM2) as its primary negative regulator, this molecular docking study seeks to answer the following hypotheses: Is the interaction between DS-3032B and MDM2 stable enough for this drug to be considered as a promising neoplastic inhibitor? AIM: To analyze, in silico, the chemical bonds between the antagonist DS-3032B and its binding site in MDM2. METHODS: For molecular docking simulations, the file containing structures of MDM2 (receptor) and the drug DS-3032B (ligand) were selected. The three-dimensional structure of MDM2 was obtained from Protein Data Bank, and the one for DS-3032B was obtained from PubChem database. The location and dimensions of the Grid box was determined using AutoDock Tools software. In this case, the dimensions of the Grid encompassed the entire receptor. The ligand DS-3032B interacts with the MDM2 receptor in a physiological environment with pH 7.4; thus, to simulate more reliably, its interaction was made with the calculation for the prediction of its protonation state using the MarvinSketch(®) software. Both ligands, with and without the protonation, were prepared for molecular docking using the AutoDock Tools software. This software detects the torsion points of the drug and calculates the angle of the torsions. Molecular docking simulations were performed using the tools of the AutoDock platform connected to the Vina software. The analyses of the amino acid residues involved in the interactions between the receptor and the ligand as well as the twists of the ligand, atoms involved in the interactions, and type, strength, and length of the interactions were performed using the PyMol software (pymol.org/2) and Discovery Studio from BIOVIA(®). RESULTS: The global alignment indicated crystal structure 5SWK was more suitable for docking simulations by presenting the p53 binding site. The three-dimensional structure 5SWK for MDM2 was selected from Protein Data Bank and the three-dimensional structure of DS-3032B was selected from PubChem (Compound CID: 73297272; Milademetan). After molecular docking simulations, the most stable conformer was selected for both protonated and non-protonated DS-3032B. The interaction between MDM2 and DS-3032B occurs with high affinity; no significant difference was observed in the affinity energies between the MDM2/pronated DS-3032B (-9.9 kcal/mol) and MDM2/non-protonated DS-3032B conformers (-10.0 kcal/mol). Sixteen amino acid residues of MDM2 are involved in chemical bonds with the protonated DS-3032B; these 16 residues of MDM2 belong to the p53 biding site region and provide high affinity to interaction and stability to drug-protein complex. CONCLUSION: Molecular docking indicated that DS-3032B antagonist binds to the same region of the p53 binding site in the MDM2 with high affinity and stability, and this suggests therapeutic efficiency. Baishideng Publishing Group Inc 2022-06-24 2022-06-24 /pmc/articles/PMC9244969/ /pubmed/35949428 http://dx.doi.org/10.5306/wjco.v13.i6.496 Text en ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved. https://creativecommons.org/licenses/by-nc/4.0/This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.
spellingShingle Basic Study
da Mota, Vítor Hugo Sales
Freire de Melo, Fabrício
de Brito, Breno Bittencourt
da Silva, Filipe Antônio França
Teixeira, Kádima Nayara
Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development
title Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development
title_full Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development
title_fullStr Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development
title_full_unstemmed Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development
title_short Molecular docking of DS-3032B, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development
title_sort molecular docking of ds-3032b, a mouse double minute 2 enzyme antagonist with potential for oncology treatment development
topic Basic Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244969/
https://www.ncbi.nlm.nih.gov/pubmed/35949428
http://dx.doi.org/10.5306/wjco.v13.i6.496
work_keys_str_mv AT damotavitorhugosales moleculardockingofds3032bamousedoubleminute2enzymeantagonistwithpotentialforoncologytreatmentdevelopment
AT freiredemelofabricio moleculardockingofds3032bamousedoubleminute2enzymeantagonistwithpotentialforoncologytreatmentdevelopment
AT debritobrenobittencourt moleculardockingofds3032bamousedoubleminute2enzymeantagonistwithpotentialforoncologytreatmentdevelopment
AT dasilvafilipeantoniofranca moleculardockingofds3032bamousedoubleminute2enzymeantagonistwithpotentialforoncologytreatmentdevelopment
AT teixeirakadimanayara moleculardockingofds3032bamousedoubleminute2enzymeantagonistwithpotentialforoncologytreatmentdevelopment